메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1-176

Strong stability preserving Runge–Kutta and multistep time discretizations

Author keywords

[No Author keywords available]

Indexed keywords

NON NEWTONIAN FLOW; RUNGE KUTTA METHODS;

EID: 84995414785     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1142/7498     Document Type: Book
Times cited : (461)

References (116)
  • 1
    • 0009619039 scopus 로고    scopus 로고
    • The Runge–Kutta theory in a nutshell
    • P. Albrecht. The Runge–Kutta theory in a nutshell. SIAM Journal on Numerical Analysis, 33:1712–1735, 1996.
    • (1996) SIAM Journal on Numerical Analysis , vol.33 , pp. 1712-1735
    • Albrecht, P.1
  • 2
    • 0000897959 scopus 로고    scopus 로고
    • Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy
    • D. Balsara and C. W. Shu. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. Journal of Computational Physics, 160:405–452, 2000.
    • (2000) Journal of Computational Physics , vol.160 , pp. 405-452
    • Balsara, D.1    Shu, C.W.2
  • 3
    • 0028413789 scopus 로고
    • Contractivity of waveform relaxation Runge–Kutta iterations and related limit methods for dissipative systems in the maximum norm
    • A. Bellen and Z. Jackiewicz and M. Zennaro. Contractivity of waveform relaxation Runge–Kutta iterations and related limit methods for dissipative systems in the maximum norm. SIAM Journal on Numerical Analysis, 31:499–523, 1994.
    • (1994) SIAM Journal on Numerical Analysis , vol.31 , pp. 499-523
    • Bellen, A.1    Jackiewicz, Z.2    Zennaro, M.3
  • 4
    • 0040133123 scopus 로고    scopus 로고
    • Unconditional contractivity in the maximum norm of diagonally split Runge-Kuttamethods
    • A. Bellen and L. Torelli. Unconditional contractivity in the maximum norm of diagonally split Runge-Kuttamethods. SIAM Journal on Numerical Analysis, 34:528–543, 1997
    • (1997) SIAM Journal on Numerical Analysis , vol.34 , pp. 528-543
    • Bellen, A.1    Torelli, L.2
  • 5
    • 0018057686 scopus 로고
    • Conservation de la positivite lors de la discretisation des problemes d’evolution paraboliques
    • C. Bolley and M. Crouzeix. Conservation de la positivite lors de la discretisation des problemes d’evolution paraboliques. R.A.I.R.O. Anal. Numer.12:237–245, 1978.
    • (1978) R.A.I.R.O. Anal. Numer , vol.12 , pp. 237-245
    • Bolley, C.1    Crouzeix, M.2
  • 6
    • 0000194464 scopus 로고
    • On the implementation of implicit Runge-Kutta methods
    • J.C. Butcher. On the implementation of implicit Runge-Kutta methods. BIT, 6:237–240, 1976.
    • (1976) BIT , vol.6 , pp. 237-240
    • Butcher, J.C.1
  • 7
    • 0031212298 scopus 로고    scopus 로고
    • Order conditions for two-step Runge–Kutta methods
    • J. C. Butcher and S. Tracogna. Order conditions for two-step Runge–Kutta methods. Applied Numerical Mathematics, 24:351–364, 1997.
    • (1997) Applied Numerical Mathematics , vol.24 , pp. 351-364
    • Butcher, J.C.1    Tracogna, S.2
  • 9
    • 84966236671 scopus 로고
    • Essentially nonoscillatory spectral Fourier methods for shock wave calculations
    • W. Cai, D. Gottlieb and C. W. Shu. Essentially nonoscillatory spectral Fourier methods for shock wave calculations. Mathematics of Computation, 52:389–410, 1989.
    • (1989) Mathematics of Computation , vol.52 , pp. 389-410
    • Cai, W.1    Gottlieb, D.2    Shu, C.W.3
  • 10
    • 13844262845 scopus 로고    scopus 로고
    • A new minimum storage Runge- Kutta scheme for computational acoustics
    • M. Calvo, J.M. Franco, and L. Randez. A new minimum storage Runge- Kutta scheme for computational acoustics. Journal of Computational Physics, 201:1–12, 2004.
    • (2004) Journal of Computational Physics , vol.201 , pp. 1-12
    • Calvo, M.1    Franco, J.M.2    Randez, L.3
  • 11
    • 17444409297 scopus 로고    scopus 로고
    • High-order RKDG methods for computational electromagnetics
    • M. H. Chen, B. Cockburn and F. Reitich. High-order RKDG methods for computational electromagnetics. Journal of Scientific Computing, 22- 23:205–226, 2005.
    • (2005) Journal of Scientific Computing , vol.22-23 , pp. 205-226
    • Chen, M.H.1    Cockburn, B.2    Reitich, F.3
  • 12
    • 84966261380 scopus 로고
    • The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case
    • B. Cockburn, S. Hou and C. W. Shu. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Mathematics of Computation, 54:545–581, 1990.
    • (1990) Mathematics of Computation , vol.54 , pp. 545-581
    • Cockburn, B.1    Hou, S.2    Shu, C.W.3
  • 13
    • 84966246413 scopus 로고
    • TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework
    • B. Cockburn and C. W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Mathematics of Computation, 52:411–435, 1989.
    • (1989) Mathematics of Computation , vol.52 , pp. 411-435
    • Cockburn, B.1    Shu, C.W.2
  • 14
    • 0000076512 scopus 로고    scopus 로고
    • Runge-Kutta Discontinuous Galerkin methods for convection-dominated problems
    • B. Cockburn and C. W. Shu. Runge-Kutta Discontinuous Galerkin methods for convection-dominated problems. Journal of Scientific Computing, 16:173–261, 2001.
    • (2001) Journal of Scientific Computing , vol.16 , pp. 173-261
    • Cockburn, B.1    Shu, C.W.2
  • 15
    • 78149297476 scopus 로고    scopus 로고
    • Optimal explicit strong-stabilitypreserving general linear methods
    • E. Constantinescu and A. Sandu. Optimal explicit strong-stabilitypreserving general linear methods. SIAM Journal on Scientific Computing, 32(5):3130–3150, 2010.
    • (2010) SIAM Journal on Scientific Computing , vol.32 , Issue.5 , pp. 3130-3150
    • Constantinescu, E.1    Sandu, A.2
  • 18
    • 0042185232 scopus 로고    scopus 로고
    • Spectral deferred correction methods for ordinary differential equations
    • A. Dutt, L. Greengard and V. Rokhlin. Spectral deferred correction methods for ordinary differential equations. BIT, 40:241–266, 2000.
    • (2000) BIT , vol.40 , pp. 241-266
    • Dutt, A.1    Greengard, L.2    Rokhlin, V.3
  • 19
    • 14844318467 scopus 로고    scopus 로고
    • Stepsize restrictions for the total-variationdiminishing property in general Runge-Kutta methods
    • L. Ferracina and M.N. Spijker. Stepsize restrictions for the total-variationdiminishing property in general Runge-Kutta methods. SIAM Journal of Numerical Analysis, 42:1073–1093, 2004.
    • (2004) SIAM Journal of Numerical Analysis , vol.42 , pp. 1073-1093
    • Ferracina, L.1    Spijker, M.N.2
  • 20
    • 55549139639 scopus 로고    scopus 로고
    • Computing optimal monotonicity-preserving Runge-Kutta methods
    • Mathematical Institute, Leiden University
    • L. Ferracina and M.N. Spijker. Computing optimal monotonicity-preserving Runge-Kutta methods. Technical Report MI2005-07, Mathematical Institute, Leiden University, 2005.
    • (2005) Technical Report MI2005-07
    • Ferracina, L.1    Spijker, M.N.2
  • 21
    • 11244318599 scopus 로고    scopus 로고
    • An extension and analysis of the Shu- Osher representation of Runge-Kutta methods
    • L. Ferracina and M.N. Spijker. An extension and analysis of the Shu- Osher representation of Runge-Kutta methods. Mathematics of Computation, 249:201–219, 2005.
    • (2005) Mathematics of Computation , vol.249 , pp. 201-219
    • Ferracina, L.1    Spijker, M.N.2
  • 22
    • 52349119458 scopus 로고    scopus 로고
    • Strong stability of singly-diagonallyimplicit Runge-Kutta methods
    • L. Ferracina and M.N. Spijker. Strong stability of singly-diagonallyimplicit Runge-Kutta methods. Applied Numerical Mathematics, 2008. doi: 10.1016/j.apnum.2007.10.004
    • (2008) Applied Numerical Mathematics
    • Ferracina, L.1    Spijker, M.N.2
  • 23
    • 84950555553 scopus 로고
    • A process for the step-by-step integration of differential equations in an automatic digital computing machine
    • S. Gill. A process for the step-by-step integration of differential equations in an automatic digital computing machine. Proceedings of the Cambridge Philosophical Society, 47:96–108, 1950.
    • (1950) Proceedings of the Cambridge Philosophical Society , vol.47 , pp. 96-108
    • Gill, S.1
  • 24
    • 84966209569 scopus 로고
    • On the accuracy of stable schemes for 2D scalar conservation laws
    • J.B. Goodman and R.J. LeVeque. On the accuracy of stable schemes for 2D scalar conservation laws. Mathematics of Computation, 45:15–21, 1985.
    • (1985) Mathematics of Computation , vol.45 , pp. 15-21
    • Goodman, J.B.1    Leveque, R.J.2
  • 25
    • 84966257131 scopus 로고
    • The CFL condition for spectral approximations to hyperbolic initial-boundary value problems
    • D. Gottlieb and E. Tadmor. The CFL condition for spectral approximations to hyperbolic initial-boundary value problems. Mathematics of Computation, 56:565–588, 1991.
    • (1991) Mathematics of Computation , vol.56 , pp. 565-588
    • Gottlieb, D.1    Tadmor, E.2
  • 26
    • 0032345207 scopus 로고    scopus 로고
    • Total variation diminishing Runge-Kutta schemes
    • S. Gottlieb and C. W. Shu. Total variation diminishing Runge-Kutta schemes. Mathematics of Computation, 67:73–85, 1998.
    • (1998) Mathematics of Computation , vol.67 , pp. 73-85
    • Gottlieb, S.1    Shu, C.W.2
  • 27
    • 0035273564 scopus 로고    scopus 로고
    • Strong stability preserving highorder time discretization methods
    • S. Gottlieb, C. W. Shu and E. Tadmor. Strong stability preserving highorder time discretization methods. SIAM Review, 43:89–112, 2001.
    • (2001) SIAM Review , vol.43 , pp. 89-112
    • Gottlieb, S.1    Shu, C.W.2    Tadmor, E.3
  • 28
    • 0347900506 scopus 로고    scopus 로고
    • Strong stability preserving properties of Runge-Kutta time discretization methods for linear constant coefficient operators
    • S. Gottlieb and L.J. Gottlieb. Strong stability preserving properties of Runge-Kutta time discretization methods for linear constant coefficient operators. Journal of Scientific Computing, 18:83–109, 2003.
    • (2003) Journal of Scientific Computing , vol.18 , pp. 83-109
    • Gottlieb, S.1    Gottlieb, L.J.2
  • 29
    • 28844507125 scopus 로고    scopus 로고
    • On high order strong stability preserving Runge-Kutta and multi step time discretizations
    • S. Gottlieb. On high order strong stability preserving Runge-Kutta and multi step time discretizations. Journal of Scientific Computing, 25:105–127, 2005.
    • (2005) Journal of Scientific Computing , vol.25 , pp. 105-127
    • Gottlieb, S.1
  • 30
    • 33745013415 scopus 로고    scopus 로고
    • Optimal strong-stability-preserving timestepping schemes with fast downwind spatial discretizations
    • S. Gottlieb and S.J. Ruuth. Optimal strong-stability-preserving timestepping schemes with fast downwind spatial discretizations. Journal of Scientific Computing, 27:289–303, 2006.
    • (2006) Journal of Scientific Computing , vol.27 , pp. 289-303
    • Gottlieb, S.1    Ruuth, S.J.2
  • 32
    • 0003589989 scopus 로고
    • Solving ordinary differential equations II: Stiff and differential-algebraic problems
    • Springer-Verlag, Berlin
    • E. Hairer and G. Wanner. Solving ordinary differential equations II: Stiff and differential-algebraic problems, Volume 14 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1991.
    • (1991) Volume 14 of Springer Series in Computational Mathematics
    • Hairer, E.1    Wanner, G.2
  • 33
    • 0005297545 scopus 로고    scopus 로고
    • Order conditions for general two-step Runge- Kutta methods
    • E. Hairer and G. Wanner. Order conditions for general two-step Runge- Kutta methods. SIAM Journal on Numerical Analysis, 34(6):2087–2089, 1997.
    • (1997) SIAM Journal on Numerical Analysis , vol.34 , Issue.6 , pp. 2087-2089
    • Hairer, E.1    Wanner, G.2
  • 34
    • 40749159424 scopus 로고
    • High resolution schemes for hyperbolic conservation laws
    • A. Harten. High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics, 49:357–393, 1983.
    • (1983) Journal of Computational Physics , vol.49 , pp. 357-393
    • Harten, A.1
  • 35
    • 3042714776 scopus 로고    scopus 로고
    • On strong stability preserving time discretization methods
    • I. Higueras. On strong stability preserving time discretization methods. Journal of Scientific Computing, 21:193–223, 2004.
    • (2004) Journal of Scientific Computing , vol.21 , pp. 193-223
    • Higueras, I.1
  • 36
    • 23244435121 scopus 로고    scopus 로고
    • Monotonicity for Runge-Kutta methods: Inner-product norms
    • I. Higueras. Monotonicity for Runge-Kutta methods: inner-product norms. Journal of Scientific Computing, 24:97–117, 2005.
    • (2005) Journal of Scientific Computing , vol.24 , pp. 97-117
    • Higueras, I.1
  • 37
    • 33745451166 scopus 로고    scopus 로고
    • Representations of Runge-Kutta methods and strong stability preserving methods
    • I. Higueras. Representations of Runge-Kutta methods and strong stability preserving methods. SIAM Journal on Numerical Analysis, 43:924–948, 2005.
    • (2005) SIAM Journal on Numerical Analysis , vol.43 , pp. 924-948
    • Higueras, I.1
  • 38
    • 34547535337 scopus 로고    scopus 로고
    • Strong stability for additive Runge-Kutta methods
    • I. Higueras. Strong stability for additive Runge-Kutta methods. SIAM Journal on Numerical Analysis, 44:1735–1758, 2006.
    • (2006) SIAM Journal on Numerical Analysis , vol.44 , pp. 1735-1758
    • Higueras, I.1
  • 39
    • 62949093712 scopus 로고    scopus 로고
    • Characterizing Strong Stability Preserving Additive Runge- Kutta Methods
    • I. Higueras. Characterizing Strong Stability Preserving Additive Runge- Kutta Methods. Journal of Scientific Computing, 39:115–128, 2009.
    • (2009) Journal of Scientific Computing , vol.39 , pp. 115-128
    • Higueras, I.1
  • 41
    • 7444255518 scopus 로고    scopus 로고
    • On the positivity of matrix-vector products
    • Z. Horvath. On the positivity of matrix-vector products. Linear Algebra and Its Applications, 393:253–258, 2004.
    • (2004) Linear Algebra and Its Applications , vol.393 , pp. 253-258
    • Horvath, Z.1
  • 42
    • 14844310375 scopus 로고    scopus 로고
    • On the positivity step size threshold of Runge-Kutta methods
    • Z. Horvath. On the positivity step size threshold of Runge-Kutta methods. Applied Numerical Mathematics, 53:341–356, 2005.
    • (2005) Applied Numerical Mathematics , vol.53 , pp. 341-356
    • Horvath, Z.1
  • 43
    • 0001372973 scopus 로고    scopus 로고
    • A note on unconditional maximum norm contractivity of diagonally split Runge-Kutta methods
    • K.J.I. Hout. A note on unconditional maximum norm contractivity of diagonally split Runge-Kutta methods. SIAM Journal on Numerical Analysis, 33:1125–1134, 1996.
    • (1996) SIAM Journal on Numerical Analysis , vol.33 , pp. 1125-1134
    • Hout, K.1
  • 44
    • 0003140474 scopus 로고    scopus 로고
    • Weighted essentially non-oscillatory schemes on triangular meshes
    • C. Hu and C. W. Shu. Weighted essentially non-oscillatory schemes on triangular meshes. Journal of Computational Physics, 150:97–127, 1999.
    • (1999) Journal of Computational Physics , vol.150 , pp. 97-127
    • Hu, C.1    Shu, C.W.2
  • 45
    • 0344006664 scopus 로고    scopus 로고
    • Low-dissipation and lowdispersion Runge-Kutta schemes for computational acoustics
    • F.Q. Hu, M.Y. Hussaini, and J.L. Manthey. Low-dissipation and lowdispersion Runge-Kutta schemes for computational acoustics. Journal of Computational Physics, 124:177–191, 1996.
    • (1996) Journal of Computational Physics , vol.124 , pp. 177-191
    • Hu, F.Q.1    Hussaini, M.Y.2    Manthey, J.L.3
  • 47
    • 61549138706 scopus 로고    scopus 로고
    • Strong stability preserving hybrid methods
    • C. Huang. Strong stability preserving hybrid methods. Applied Numerical Mathematics, 59(5):891–904, 2009.
    • (2009) Applied Numerical Mathematics , vol.59 , Issue.5 , pp. 891-904
    • Huang, C.1
  • 48
    • 33646436723 scopus 로고    scopus 로고
    • On monotonicity and boundedness proper ties of linear multistep methods
    • W. Hundsdorfer and S.J. Ruuth. On monotonicity and boundedness proper ties of linear multistep methods. Mathematics of Computation, 75(254):655–672, 2005.
    • (2005) Mathematics of Computation , vol.75 , Issue.254 , pp. 655-672
    • Hundsdorfer, W.1    Ruuth, S.J.2
  • 50
    • 0001164459 scopus 로고
    • A general class of two-step Runge-Kutta methods for ordinary differential equations
    • Z. Jackiewicz and S. Tracogna. A general class of two-step Runge-Kutta methods for ordinary differential equations. SIAM Journal of Numerical Analysis, 32:1390–1427, 1995.
    • (1995) SIAM Journal of Numerical Analysis , vol.32 , pp. 1390-1427
    • Jackiewicz, Z.1    Tracogna, S.2
  • 51
    • 0030161771 scopus 로고    scopus 로고
    • Efficient implementation of weighted ENO schemes
    • G.-S. Jiang and C.-W. Shu. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126:202–228, 1996.
    • (1996) Journal of Computational Physics , vol.126 , pp. 202-228
    • Jiang, G.-S.1    Shu, C.-W.2
  • 52
    • 0034316651 scopus 로고    scopus 로고
    • Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations
    • C.A. Kennedy, M.H. Carpenter and R.M. Lewis. Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations. Applied Numerical Mathematics, 35:177–219, 2000.
    • (2000) Applied Numerical Mathematics , vol.35 , pp. 177-219
    • Kennedy, C.A.1    Carpenter, M.H.2    Lewis, R.M.3
  • 53
    • 18344396766 scopus 로고    scopus 로고
    • On the practical importance of the SSP property for Runge-Kutta time integrators for some common Godunov-type schemes
    • D.I. Ketcheson and A.C. Robinson. On the practical importance of the SSP property for Runge-Kutta time integrators for some common Godunov-type schemes. International Journal for Numerical Methods in Fluids, 48:271–303, 2005.
    • (2005) International Journal for Numerical Methods in Fluids , vol.48 , pp. 271-303
    • Ketcheson, D.I.1    Robinson, A.C.2
  • 54
    • 56249142763 scopus 로고    scopus 로고
    • Optimal implicit strong stability preserving Runge-Kutta methods
    • D.I. Ketcheson, C.B. Macdonald and S. Gottlieb. Optimal implicit strong stability preserving Runge-Kutta methods. Applied Numerical Mathematics, 52(2): 373–392, 2009.
    • (2009) Applied Numerical Mathematics , vol.52 , Issue.2 , pp. 373-392
    • Ketcheson, D.I.1    Macdonald, C.B.2    Gottlieb, S.3
  • 55
    • 55549084557 scopus 로고    scopus 로고
    • Highly efficient strong stability preserving Runge-Kutta methods with low-storage implementations
    • D. I. Ketcheson. Highly efficient strong stability preserving Runge-Kutta methods with low-storage implementations. SIAM Journal on Scientific Computing, 30(4):2113–2136, 2008.
    • (2008) SIAM Journal on Scientific Computing , vol.30 , Issue.4 , pp. 2113-2136
    • Ketcheson, D.I.1
  • 56
    • 67749146997 scopus 로고    scopus 로고
    • Computation of optimal monotonicity preserving general linear methods
    • D.I. Ketcheson. Computation of optimal monotonicity preserving general linear methods. Mathematics of Computation, 78: 1497–1513, 2009.
    • (2009) Mathematics of Computation , vol.78 , pp. 1497-1513
    • Ketcheson, D.I.1
  • 59
    • 72449189678 scopus 로고    scopus 로고
    • Runge-Kutta methods with minimum storage implementations
    • D. I. Ketcheson. Runge-Kutta methods with minimum storage implementations. Journal of Computational Physics, 229(5):1763–1773, 2010.
    • (2010) Journal of Computational Physics , vol.229 , Issue.5 , pp. 1763-1773
    • Ketcheson, D.I.1
  • 60
    • 0001813542 scopus 로고
    • Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems
    • J. F. B. M. Kraaijevanger. Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems. Numerische Mathematik, 48:303–322, 1986.
    • (1986) Numerische Mathematik , vol.48 , pp. 303-322
    • Kraaijevanger, J.1
  • 61
    • 38249024910 scopus 로고
    • Algebraic stability and error propagation in Runge-Kutta methods
    • J. F. B. M. Kraaijevanger and M. N. Spijker. Algebraic stability and error propagation in Runge-Kutta methods. Applied Numerical Mathematics, 5:71–87, 1989.
    • (1989) Applied Numerical Mathematics , vol.5 , pp. 71-87
    • Kraaijevanger, J.1    Spijker, M.N.2
  • 62
    • 0000625694 scopus 로고
    • Contractivity of Runge-Kutta methods
    • J. F. B. M. Kraaijevanger. Contractivity of Runge-Kutta methods. BIT, 31:482–528, 1991.
    • (1991) BIT , vol.31 , pp. 482-528
    • Kraaijevanger, J.1
  • 63
    • 0347987814 scopus 로고    scopus 로고
    • New high-resolution schemes for nonlinear conservation laws and convection-diffusion equations
    • A. Kurganov and E. Tadmor. New high-resolution schemes for nonlinear conservation laws and convection-diffusion equations. Journal of Computational Physics, 160:241–282, 2000.
    • (2000) Journal of Computational Physics , vol.160 , pp. 241-282
    • Kurganov, A.1    Tadmor, E.2
  • 66
    • 2342573328 scopus 로고
    • Contractivity-preserving explicit linear multistep methods
    • H.W.J. Lenferink. Contractivity-preserving explicit linear multistep methods. Numerische Mathematik, 55:213–223, 1989.
    • (1989) Numerische Mathematik , vol.55 , pp. 213-223
    • Lenferink, H.1
  • 67
    • 84966211896 scopus 로고
    • Contractivity-preserving implicit linear multistep methods
    • H.W.J. Lenferink. Contractivity-preserving implicit linear multistep methods. Mathematics of Computation, 56:177–199, 1991.
    • (1991) Mathematics of Computation , vol.56 , pp. 177-199
    • Lenferink, H.1
  • 69
    • 0032014411 scopus 로고    scopus 로고
    • From semi-discrete to fully discrete: Stability of Runge-Kutta schemes by the energy method
    • D. Levy and E. Tadmor. From semi-discrete to fully discrete: stability of Runge-Kutta schemes by the energy method. SIAM Review, 40:40–73, 1998.
    • (1998) SIAM Review , vol.40 , pp. 40-73
    • Levy, D.1    Tadmor, E.2
  • 70
    • 0000592595 scopus 로고
    • Weighted essentially non-oscillatory schemes
    • X. D. Liu, S. Osher and T. Chan. Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 115(1):200–212, 1994.
    • (1994) Journal of Computational Physics , vol.115 , Issue.1 , pp. 200-212
    • Liu, X.D.1    Osher, S.2    Chan, T.3
  • 71
    • 84995477122 scopus 로고    scopus 로고
    • Strong stability preserving property of the deferred correction time discretization
    • To appear
    • Y. Liu, C. W. Shu and M. Zhang. Strong stability preserving property of the deferred correction time discretization. Journal of Computational Mathematics. To appear
    • Journal of Computational Mathematics
    • Liu, Y.1    Shu, C.W.2    Zhang, M.3
  • 73
    • 49749090861 scopus 로고    scopus 로고
    • A numerical study of diagonally split Runge-Kutta methods for PDEs with discontinuities
    • C.B. Macdonald, S. Gottlieb, and S. Ruuth. A numerical study of diagonally split Runge-Kutta methods for PDEs with discontinuities. Journal of Scientific Computing, 36 (1): 89-112, 2008.
    • (2008) Journal of Scientific Computing , vol.36 , Issue.1 , pp. 89-112
    • Macdonald, C.B.1    Gottlieb, S.2    Ruuth, S.3
  • 74
    • 64949150500 scopus 로고    scopus 로고
    • Semi-implicit spectral deferred correction methods for ordinary differential equations
    • M.L. Minion. Semi-implicit spectral deferred correction methods for ordinary differential equations. SIAM Journal on Numerical Analysis, 41:605–623, 2003.
    • (2003) SIAM Journal on Numerical Analysis , vol.41 , pp. 605-623
    • Minion, M.L.1
  • 75
    • 28144455569 scopus 로고
    • Non-oscillatory central differencing for hyperbolic conservation laws
    • H. Nessyahu and E. Tadmor. Non-oscillatory central differencing for hyperbolic conservation laws. Journal of Computational Physics, 87:408–463, 1990.
    • (1990) Journal of Computational Physics , vol.87 , pp. 408-463
    • Nessyahu, H.1    Tadmor, E.2
  • 76
    • 0022144821 scopus 로고
    • Convergence of generalized MUSCL schemes
    • S. Osher. Convergence of generalized MUSCL schemes. SIAM Journal on Numerical Analysis, 22:947–961, 1985.
    • (1985) SIAM Journal on Numerical Analysis , vol.22 , pp. 947-961
    • Osher, S.1
  • 79
    • 44749084234 scopus 로고
    • Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations
    • S. Osher and J. Sethian. Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79:12–49, 1988.
    • (1988) Journal of Computational Physics , vol.79 , pp. 12-49
    • Osher, S.1    Sethian, J.2
  • 80
    • 0026204106 scopus 로고
    • High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations
    • S. Osher and C.-W. Shu. High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM Journal on Numerical Analysis, 28:907– 922, 1991.
    • (1991) SIAM Journal on Numerical Analysis, 28:907– , pp. 922
    • Osher, S.1    Shu, C.-W.2
  • 81
    • 84966232121 scopus 로고
    • On the convergence of difference approximations to scalar conservation laws
    • S. Osher and E. Tadmor. On the convergence of difference approximations to scalar conservation laws. Mathematics of Computation, 50:19–51, 1988.
    • (1988) Mathematics of Computation , vol.50 , pp. 19-51
    • Osher, S.1    Tadmor, E.2
  • 82
  • 84
    • 32944469214 scopus 로고    scopus 로고
    • Global optimization of explicit strong-stability-preserving Runge-Kutta methods
    • S.J. Ruuth. Global optimization of explicit strong-stability-preserving Runge-Kutta methods. Mathematics of Computation, 75:183–207, 2006.
    • (2006) Mathematics of Computation , vol.75 , pp. 183-207
    • Ruuth, S.J.1
  • 85
    • 20344378674 scopus 로고    scopus 로고
    • High-order linear multistep methods with general monotonicity and boundedness properties
    • S.J. Ruuth and W. Hundsdorfer. High-order linear multistep methods with general monotonicity and boundedness properties. Journal of Computational Physics, 209:226–248, 2005.
    • (2005) Journal of Computational Physics , vol.209 , pp. 226-248
    • Ruuth, S.J.1    Hundsdorfer, W.2
  • 86
    • 0013150498 scopus 로고    scopus 로고
    • Two barriers on strong-stability-preserving time discretization methods
    • S.J. Ruuth and R.J. Spiteri. Two barriers on strong-stability-preserving time discretization methods. Journal of Scientific Computation, 17:211–220, 2002.
    • (2002) Journal of Scientific Computation , vol.17 , pp. 211-220
    • Ruuth, S.J.1    Spiteri, R.J.2
  • 87
    • 14844365146 scopus 로고    scopus 로고
    • High-order strong-stability-preserving Runge- Kutta methods with downwind-biased spatial discretizations
    • S.J. Ruuth and R.J. Spiteri. High-order strong-stability-preserving Runge- Kutta methods with downwind-biased spatial discretizations. SIAM Journal on Numerical Analysis, 42:974–996, 2004.
    • (2004) SIAM Journal on Numerical Analysis , vol.42 , pp. 974-996
    • Ruuth, S.J.1    Spiteri, R.J.2
  • 89
    • 0022594466 scopus 로고
    • Circle contractive linear multistep methods
    • J. Sand. Circle contractive linear multistep methods. BIT 26:114–122, 1986.
    • (1986) BIT , vol.26 , pp. 114-122
    • Sand, J.1
  • 90
    • 84966199917 scopus 로고
    • A third-order accurate variation nonexpansive difference scheme for single nonlinear conservation law
    • R. Sanders. A third-order accurate variation nonexpansive difference scheme for single nonlinear conservation law. Mathematics of Computation, 51:535– 558, 1988.
    • (1988) Mathematics of Computation, 51:535– , pp. 558
    • Sanders, R.1
  • 92
    • 45449125925 scopus 로고
    • Efficient implementation of essentially nonoscillatory shock-capturing schemes
    • C. W. Shu and S. Osher. Efficient implementation of essentially nonoscillatory shock-capturing schemes. Journal of Computational Physics, 77:439–471, 1988.
    • (1988) Journal of Computational Physics , vol.77 , pp. 439-471
    • Shu, C.W.1    Osher, S.2
  • 93
    • 0001568854 scopus 로고
    • Efficient implementation of essentially nonoscillatory shock capturing schemes II
    • C. W. Shu and S. Osher. Efficient implementation of essentially nonoscillatory shock capturing schemes II. Journal of Computational Physics, 83:32–78, 1989.
    • (1989) Journal of Computational Physics , vol.83 , pp. 32-78
    • Shu, C.W.1    Osher, S.2
  • 95
    • 0040109369 scopus 로고
    • Contractivity in the numerical solution of initial value problems
    • M.N. Spijker. Contractivity in the numerical solution of initial value problems. Numerische Mathematik, 42:271–290, 1983.
    • (1983) Numerische Mathematik , vol.42 , pp. 271-290
    • Spijker, M.N.1
  • 96
    • 46949088290 scopus 로고    scopus 로고
    • Stepsize conditions for general monotonicity in numerical initial value problems
    • M.N. Spijker. Stepsize conditions for general monotonicity in numerical initial value problems. SIAM Journal on Numerical Analysis, 45:1226–1245, 2007.
    • (2007) SIAM Journal on Numerical Analysis , vol.45 , pp. 1226-1245
    • Spijker, M.N.1
  • 97
    • 0001118530 scopus 로고    scopus 로고
    • A new class of optimal high-order strongstability- preserving time discretization methods
    • R. J. Spiteri and S. J. Ruuth. A new class of optimal high-order strongstability- preserving time discretization methods. SIAM Journal of Numerical Analysis, 40:469–491, 2002.
    • (2002) SIAM Journal of Numerical Analysis , vol.40 , pp. 469-491
    • Spiteri, R.J.1    Ruuth, S.J.2
  • 98
    • 0037434586 scopus 로고    scopus 로고
    • Nonlinear evolution using optimal fourthorder strong-stability-preserving Runge-Kutta methods
    • R. J. Spiteri and S. J. Ruuth. Nonlinear evolution using optimal fourthorder strong-stability-preserving Runge-Kutta methods. Mathematics and Computers in Simulation, 62:125–135, 2003.
    • (2003) Mathematics and Computers in Simulation , vol.62 , pp. 125-135
    • Spiteri, R.J.1    Ruuth, S.J.2
  • 99
    • 33748538768 scopus 로고
    • Accurate partial difference methods ii: Nonlinear problems
    • G. Strang. Accurate partial difference methods ii: nonlinear problems. Numerische Mathematik, 6:37–46, 1964.
    • (1964) Numerische Mathematik , vol.6 , pp. 37-46
    • Strang, G.1
  • 100
    • 0003983874 scopus 로고
    • Finite Difference Schemes and Partial Differential Equations
    • Wadsworth and Brooks, California
    • J.C. Strikwerda. Finite Difference Schemes and Partial Differential Equations. Cole Mathematics Series. Wadsworth and Brooks, California, 1989.
    • (1989) Cole Mathematics Series
    • Strikwerda, J.C.1
  • 101
    • 0021513424 scopus 로고
    • High resolution schemes using flux limiters for hyperbolic conservation laws
    • P.K. Sweby. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM Journal on Numerical Analysis, 21:995–1011, 1984.
    • (1984) SIAM Journal on Numerical Analysis , vol.21 , pp. 995-1011
    • Sweby, P.K.1
  • 103
    • 33846833727 scopus 로고    scopus 로고
    • Optimized Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics
    • K. Tselios and T.E. Simos. Optimized Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. Physics Letters A, 363:38–47, 2007.
    • (2007) Physics Letters A , vol.363 , pp. 38-47
    • Tselios, K.1    Simos, T.E.2
  • 104
    • 18344377936 scopus 로고
    • Absolute monotonicity of rational functions occurring in the numerical solution of initial value problems
    • J.A. van de Griend and J.F.B.M. Kraaijevanger. Absolute monotonicity of rational functions occurring in the numerical solution of initial value problems. Numerische Mathematik, 49:413–424, 1986.
    • (1986) Numerische Mathematik , vol.49 , pp. 413-424
    • Van De Griend, J.A.1    Kraaijevanger, J.2
  • 105
    • 0007085110 scopus 로고
    • Explicit Runge-Kutta formulas with increased stability boundaries
    • P.J. van der Houwen. Explicit Runge-Kutta formulas with increased stability boundaries. Numerische Mathematik, 20:149–164, 1972.
    • (1972) Numerische Mathematik , vol.20 , pp. 149-164
    • Van Der Houwen, P.J.1
  • 106
    • 2442433925 scopus 로고
    • Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method
    • B. van Leer. Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method. Journal of Computational Physics, 32:101–136, 1979.
    • (1979) Journal of Computational Physics , vol.32 , pp. 101-136
    • Van Leer, B.1
  • 107
    • 0030283684 scopus 로고    scopus 로고
    • High-order explicit RungeKutta pairs with low stage order
    • J. H. Verner. High-order explicit RungeKutta pairs with low stage order. Applied Numerical Methods, 22, 345-357, 1996.
    • (1996) Applied Numerical Methods , vol.22 , pp. 345-357
    • Verner, J.H.1
  • 108
    • 33644619168 scopus 로고    scopus 로고
    • Improved starting methods for two-step Runge–Kutta methods of stage-order p-3
    • J. H. Verner. Improved starting methods for two-step Runge–Kutta methods of stage-order p-3. Applied Numerical Mathematics, 56(3-4):388–396, 2006.
    • (2006) Applied Numerical Mathematics , vol.56 , Issue.3-4 , pp. 388-396
    • Verner, J.H.1
  • 109
    • 25144507510 scopus 로고    scopus 로고
    • Starting methods for two-step Runge–Kutta methods of stageorder 3 and order 6
    • J. H. Verner. Starting methods for two-step Runge–Kutta methods of stageorder 3 and order 6. Journal of Computational and Applied Mathematics, 185:292–307, 2006.
    • (2006) Journal of Computational and Applied Mathematics , vol.185 , pp. 292-307
    • Verner, J.H.1
  • 112
    • 84995505840 scopus 로고    scopus 로고
    • Positivity preserving high order well balanced discontinuous Galerkin methods for the shallow water equations
    • to appear
    • Y. Xing, X. Zhang and C. W. Shu. Positivity preserving high order well balanced discontinuous Galerkin methods for the shallow water equations. Advances in Water Resources, to appear
    • Advances in Water Resources
    • Xing, Y.1    Zhang, X.2    Shu, C.W.3
  • 113
    • 77954196127 scopus 로고    scopus 로고
    • A genuinely high order total variation diminishing scheme for one-dimensional scalar conservation laws
    • X. Zhang and C. W. Shu. A genuinely high order total variation diminishing scheme for one-dimensional scalar conservation laws. SIAM Journal on Numerical Analysis, 48:772–795, 2010.
    • (2010) SIAM Journal on Numerical Analysis , vol.48 , pp. 772-795
    • Zhang, X.1    Shu, C.W.2
  • 114
    • 77949317923 scopus 로고    scopus 로고
    • On maximum-principle-satisfying high order schemes for scalar conservation laws
    • X. Zhang and C. -W. Shu. On maximum-principle-satisfying high order schemes for scalar conservation laws. Journal of Computational Physics, 229:3091–3120, 2010.
    • (2010) Journal of Computational Physics , vol.229 , pp. 3091-3120
    • Zhang, X.1    Shu, C.-W.2
  • 115
    • 84995505826 scopus 로고    scopus 로고
    • On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes
    • to appear
    • X. Zhang and C. W. Shu. On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. Journal of Computational Physics, to appear
    • Journal of Computational Physics
    • Zhang, X.1    Shu, C.W.2
  • 116
    • 84995505824 scopus 로고    scopus 로고
    • Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes
    • submitted
    • X. Zhang, Y. Xia and C. W. Shu. Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. Journal of Scientific Computing, submitted.
    • Journal of Scientific Computing
    • Zhang, X.1    Xia, Y.2    Shu, C.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.