메뉴 건너뛰기




Volumn 18, Issue 1, 2003, Pages 83-109

Strong Stability Preserving Properties of Runge-Kutta Time Discretization Methods for Linear Constant Coefficient Operators

Author keywords

High order accuracy; Runge Kutta methods; Strong stability preserving; Time discretization

Indexed keywords

HIGH ORDER ACCURACY; STRONG STABILITY PRESERVING (SSP); TIME DISCRETIZATION;

EID: 0347900506     PISSN: 08857474     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1020338228736     Document Type: Article
Times cited : (57)

References (20)
  • 3
    • 84966246413 scopus 로고
    • TVS Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework
    • Cockburn, B., and Shu, C.-W. (1989). TVS Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework. Math. Comp. 52, 411-435.
    • (1989) Math. Comp , vol.52 , pp. 411-435
    • Cockburn, B.1    Shu, C.-W.2
  • 4
    • 0032345207 scopus 로고    scopus 로고
    • Total variation diminishing Runge-Kutta schemes
    • Gottlieb, S., and Shu, C.-W. (1998). Total variation diminishing Runge-Kutta schemes. Math. Comp. 67, 73-85.
    • (1998) Math. Comp. , vol.67 , pp. 73-85
    • Gottlieb, S.1    Shu, C.-W.2
  • 5
    • 0035273564 scopus 로고    scopus 로고
    • Strong stability preserving high order time discretization methods
    • Gottlieb, S., Shu, C.-W., and Tadmor, E. (2001). Strong stability preserving high order time discretization methods. SIAM Rev. 43(1), 89-112.
    • (2001) SIAM Rev. , vol.43 , Issue.1 , pp. 89-112
    • Gottlieb, S.1    Shu, C.-W.2    Tadmor, E.3
  • 7
    • 84966257131 scopus 로고
    • The CFL condition for spectral approximations to hyperbolic initial-boundary value problems
    • Gottlieb, D., and Tadmor, E. (1991). The CFL condition for spectral approximations to hyperbolic initial-boundary value problems. Math. Comp. 56, 565-588.
    • (1991) Math. Comp. , vol.56 , pp. 565-588
    • Gottlieb, D.1    Tadmor, E.2
  • 9
    • 40749159424 scopus 로고
    • High resolution schemes for hyperbolic conservation laws
    • Harten, A. (1983). High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357-393.
    • (1983) J. Comput. Phys. , vol.49 , pp. 357-393
    • Harten, A.1
  • 10
    • 28844508975 scopus 로고    scopus 로고
    • New high-resolution schemes for nonlinear conservation laws and related convection-diffusion equations
    • Kurganov, A., and Tadmor, E. (1999). New high-resolution schemes for nonlinear conservation laws and related convection-diffusion equations, UCLA CAM Report No. 99-16.
    • (1999) UCLA CAM Report No. 99-16 , vol.99 , Issue.16
    • Kurganov, A.1    Tadmor, E.2
  • 11
    • 0032014411 scopus 로고    scopus 로고
    • From semi-discrete to fully discrete: Stability of Runge-Kutta schemes by the energy method
    • Levy, D., and Tadmor, E. (1998). From semi-discrete to fully discrete: Stability of Runge-Kutta schemes by the energy method. SIAM Rev. 40, 40-73.
    • (1998) SIAM Rev. , vol.40 , pp. 40-73
    • Levy, D.1    Tadmor, E.2
  • 12
    • 0021513288 scopus 로고
    • High resolution schemes and the entropy condition
    • Osher, S., and Chakravarthy, S. (1984). High resolution schemes and the entropy condition. SIAM J. Numer. Anal. 21, 955-984.
    • (1984) SIAM J. Numer. Anal. , vol.21 , pp. 955-984
    • Osher, S.1    Chakravarthy, S.2
  • 13
    • 84966232121 scopus 로고
    • On the convergence of difference approximations to scalar conservation laws
    • Osher, S., and Tadmor, E. (1988). On the convergence of difference approximations to scalar conservation laws. Math. Comp. 50, 19-51.
    • (1988) Math. Comp. , vol.50 , pp. 19-51
    • Osher, S.1    Tadmor, E.2
  • 14
    • 0000564951 scopus 로고
    • Total-variation-diminishing time discretizations
    • Shu, C.-W. (1988). Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073-1084.
    • (1988) SIAM J. Sci. Stat. Comput. , vol.9 , pp. 1073-1084
    • Shu, C.-W.1
  • 15
    • 45449125925 scopus 로고
    • Efficient implementation of essentially non-oscillatory shock-capturing schemes
    • Shu, C.-W., and Osher, S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439-471.
    • (1988) J. Comput. Phys. , vol.77 , pp. 439-471
    • Shu, C.-W.1    Osher, S.2
  • 18
    • 0021513424 scopus 로고
    • High resolution schemes using flux limiters for hyperbolic conservation laws
    • Sweby, P. K. (1984). High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995-1011.
    • (1984) SIAM J. Numer. Anal. , vol.21 , pp. 995-1011
    • Sweby, P.K.1
  • 19
    • 0002033981 scopus 로고    scopus 로고
    • Approximate solutions of nonlinear conservation laws
    • Quarteroni, A. (ed.), Lectures Notes from CIME Course Cetraro, Italy, Lecture Notes in Mathematics 1697, Springer-Verlag, 1998
    • Tadmor, E. (1997). Approximate solutions of nonlinear conservation laws. In Quarteroni, A. (ed.), Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lectures Notes from CIME Course Cetraro, Italy, Lecture Notes in Mathematics 1697, Springer-Verlag, 1998, pp. 1-150.
    • (1997) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , pp. 1-150
    • Tadmor, E.1
  • 20
    • 0030283684 scopus 로고    scopus 로고
    • High-order explicit Runge-Kutta pairs with low stage order
    • Verner, J. H. (1996). High-order explicit Runge-Kutta pairs with low stage order. Appl. Numer. Methods 22, 345-357.
    • (1996) Appl. Numer. Methods , vol.22 , pp. 345-357
    • Verner, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.