메뉴 건너뛰기




Volumn 39, Issue 1, 2009, Pages 115-128

Characterizing strong stability preserving additive runge-kutta methods

Author keywords

Absolutely monotonic; Additive Runge Kutta; Nonnegative coefficients; Radius of absolute monotonicity; Runge Kutta; SSP; Strong stability preserving

Indexed keywords

ABSOLUTELY MONOTONIC; ADDITIVE RUNGE-KUTTA; NONNEGATIVE COEFFICIENTS; RADIUS OF ABSOLUTE MONOTONICITY; RUNGE-KUTTA; SSP; STRONG STABILITY PRESERVING;

EID: 62949093712     PISSN: 08857474     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10915-008-9252-2     Document Type: Article
Times cited : (24)

References (28)
  • 1
    • 0031269714 scopus 로고    scopus 로고
    • Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations
    • U.M. Ascher S.J. Ruuth R. Spiteri 1997 Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations Appl. Numer. Math. 25 151 167
    • (1997) Appl. Numer. Math. , vol.25 , pp. 151-167
    • Ascher, U.M.1    Ruuth, S.J.2    Spiteri, R.3
  • 2
    • 35549008061 scopus 로고    scopus 로고
    • Multirate timestepping methods for hyperbolic conservation laws
    • E.M. Constantinescu A. Sandu 2007 Multirate timestepping methods for hyperbolic conservation laws J. Sci. Comput. 33 239 278
    • (2007) J. Sci. Comput. , vol.33 , pp. 239-278
    • Constantinescu, E.M.1    Sandu, A.2
  • 3
    • 0003239298 scopus 로고
    • Stability of Runge-Kutta methods for stiff nonlinear differential equations
    • Amsterdam
    • Dekker, K., Verwer, J.G.: Stability of Runge-Kutta methods for stiff nonlinear differential equations. CWI Monographs 2. Amsterdam (1984)
    • (1984) CWI Monographs , vol.2
    • Dekker, K.1    Verwer, J.G.2
  • 4
    • 14844318467 scopus 로고    scopus 로고
    • Stepsize restrictions for the total-variation-diminishing property in general Runge-Kutta methods
    • L. Ferracina M.N. Spijker 2004 Stepsize restrictions for the total-variation-diminishing property in general Runge-Kutta methods SIAM J. Numer. Anal. 42 1073 1093
    • (2004) SIAM J. Numer. Anal. , vol.42 , pp. 1073-1093
    • Ferracina, L.1    Spijker, M.N.2
  • 5
    • 52349119458 scopus 로고    scopus 로고
    • Strong stability of singly-diagonally-implicit Runge-Kutta methods
    • L. Ferracina M.N. Spijker 2008 Strong stability of singly-diagonally- implicit Runge-Kutta methods Appl. Numer. Math. 58 1675 1686
    • (2008) Appl. Numer. Math. , vol.58 , pp. 1675-1686
    • Ferracina, L.1    Spijker, M.N.2
  • 7
    • 28844507125 scopus 로고    scopus 로고
    • On high order strong stability-preserving Runge-Kutta and multi step time discretizations
    • S. Gottlieb 2005 On high order strong stability-preserving Runge-Kutta and multi step time discretizations J. Sci. Comput. 25 105 128
    • (2005) J. Sci. Comput. , vol.25 , pp. 105-128
    • Gottlieb, S.1
  • 8
    • 0032345207 scopus 로고    scopus 로고
    • Total variation diminishing Runge-Kutta schemes
    • S. Gottlieb C.W. Shu 1998 Total variation diminishing Runge-Kutta schemes Math. Comput. 67 73 85
    • (1998) Math. Comput. , vol.67 , pp. 73-85
    • Gottlieb, S.1    Shu, C.W.2
  • 9
    • 0035273564 scopus 로고    scopus 로고
    • Strong stability-preserving high order time discretization methods
    • S. Gottlieb C.W. Shu E. Tadmor 2001 Strong stability-preserving high order time discretization methods SIAM Rev. 43 89 112
    • (2001) SIAM Rev. , vol.43 , pp. 89-112
    • Gottlieb, S.1    Shu, C.W.2    Tadmor, E.3
  • 10
    • 3042714776 scopus 로고    scopus 로고
    • On strong stability preserving time discretization methods
    • I. Higueras 2004 On strong stability preserving time discretization methods J. Sci. Comput. 21 193 223
    • (2004) J. Sci. Comput. , vol.21 , pp. 193-223
    • Higueras, I.1
  • 11
    • 33745451166 scopus 로고    scopus 로고
    • Representations of Runge-Kutta methods and strong stability preserving methods
    • I. Higueras 2005 Representations of Runge-Kutta methods and strong stability preserving methods SIAM J. Numer. Anal. 43 924 948
    • (2005) SIAM J. Numer. Anal. , vol.43 , pp. 924-948
    • Higueras, I.1
  • 12
    • 34547535337 scopus 로고    scopus 로고
    • Strong stability for additive Runge-Kutta methods
    • I. Higueras 2006 Strong stability for additive Runge-Kutta methods SIAM J. Numer. Anal. 44 1735 1758
    • (2006) SIAM J. Numer. Anal. , vol.44 , pp. 1735-1758
    • Higueras, I.1
  • 13
    • 0003815042 scopus 로고    scopus 로고
    • Additive Runge-Kutta schemes for convection-diffusion-reaction equations
    • Langley Research Center, Hampton, VA, 2001
    • Kennedy, C.A., Carpenter, M.H.: Additive Runge-Kutta schemes for convection-diffusion-reaction equations. NASA Technical Memorandum NASA/TM-2001-211038. Langley Research Center, Hampton, VA, 2001 (2003)
    • (2003) NASA Technical Memorandum , vol.NASA-TM-2001-211038
    • Kennedy, C.A.1    Carpenter, M.H.2
  • 14
    • 0037216570 scopus 로고    scopus 로고
    • Additive Runge-Kutta schemes for convection-diffusion-reaction equations
    • C.A. Kennedy M.H. Carpenter 2003 Additive Runge-Kutta schemes for convection-diffusion-reaction equations Appl. Numer. Math. 44 139 181
    • (2003) Appl. Numer. Math. , vol.44 , pp. 139-181
    • Kennedy, C.A.1    Carpenter, M.H.2
  • 15
    • 55549084557 scopus 로고    scopus 로고
    • Highly efficient strong stability-preserving Runge-Kutta methods with low-storage implementations
    • D. Ketcheson 2008 Highly efficient strong stability-preserving Runge-Kutta methods with low-storage implementations SIAM J. Sci. Comput. 30 2113 2136
    • (2008) SIAM J. Sci. Comput. , vol.30 , pp. 2113-2136
    • Ketcheson, D.1
  • 16
    • 56249142763 scopus 로고    scopus 로고
    • Optimal implict strong stability preserving Runge-Kutta methods
    • 10.1016/j.apnum.2008.03.034
    • D. Ketcheson C.B. MacDonald S. Gottlieb 2008 Optimal implict strong stability preserving Runge-Kutta methods Appl. Numer. Math. 10.1016/j.apnum. 2008.03.034
    • (2008) Appl. Numer. Math.
    • Ketcheson, D.1    MacDonald, C.B.2    Gottlieb, S.3
  • 17
    • 0000625694 scopus 로고
    • Contractivity of Runge-Kutta methods
    • J.F.B.M. Kraaijevanger 1991 Contractivity of Runge-Kutta methods BIT 31 482 528
    • (1991) BIT , vol.31 , pp. 482-528
    • Kraaijevanger, J.F.B.M.1
  • 19
    • 0012148580 scopus 로고    scopus 로고
    • Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations
    • Brugnano, L., Trigiante, D. (eds.)
    • Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations. In: Brugnano, L., Trigiante, D. (eds.) Recent Trends in Numerical Analysis, vol. 3, pp. 269-289 (2000)
    • (2000) Recent Trends in Numerical Analysis , vol.3 , pp. 269-289
    • Pareschi, L.1    Russo, G.2
  • 20
    • 28844475047 scopus 로고    scopus 로고
    • Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation
    • L. Pareschi G. Russo 2005 Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation J. Sci. Comput. 25 129 155
    • (2005) J. Sci. Comput. , vol.25 , pp. 129-155
    • Pareschi, L.1    Russo, G.2
  • 21
    • 32944469214 scopus 로고    scopus 로고
    • Global optimization of explicit strong-stability-preserving Runge-Kutta methods
    • S.J. Ruuth 2006 Global optimization of explicit strong-stability- preserving Runge-Kutta methods Math. Comput. 75 183 207
    • (2006) Math. Comput. , vol.75 , pp. 183-207
    • Ruuth, S.J.1
  • 22
    • 0013150498 scopus 로고    scopus 로고
    • Two barriers on strong stability preserving time discretization methods
    • S.J. Ruuth R.J. Spiteri 2002 Two barriers on strong stability preserving time discretization methods J. Sci. Comput. 17 211 220
    • (2002) J. Sci. Comput. , vol.17 , pp. 211-220
    • Ruuth, S.J.1    Spiteri, R.J.2
  • 23
    • 14844365146 scopus 로고    scopus 로고
    • High-order strong-stability-preserving Runge-Kutta methods with downwind-biased spatial discretizations
    • S.J. Ruuth R.J. Spiteri 2004 High-order strong-stability-preserving Runge-Kutta methods with downwind-biased spatial discretizations SIAM J. Numer. Anal. 42 974 996
    • (2004) SIAM J. Numer. Anal. , vol.42 , pp. 974-996
    • Ruuth, S.J.1    Spiteri, R.J.2
  • 24
    • 0000564951 scopus 로고
    • Total variation diminishing time discretizations
    • C.W. Shu 1988 Total variation diminishing time discretizations SIAM J. Sci. Comput. 9 1073 1084
    • (1988) SIAM J. Sci. Comput. , vol.9 , pp. 1073-1084
    • Shu, C.W.1
  • 25
    • 45449125925 scopus 로고
    • Efficient implementation of essentially non-oscillatory shock-capturing schemes
    • C.W. Shu S. Osher 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes J. Comput. Phys. 77 439 471
    • (1988) J. Comput. Phys. , vol.77 , pp. 439-471
    • Shu, C.W.1    Osher, S.2
  • 26
    • 46949088290 scopus 로고    scopus 로고
    • Stepsize conditions for general monotonicity in numerical initial value problems
    • M.N. Spijker 2007 Stepsize conditions for general monotonicity in numerical initial value problems SIAM J. Numer. Anal. 45 1226 1245
    • (2007) SIAM J. Numer. Anal. , vol.45 , pp. 1226-1245
    • Spijker, M.N.1
  • 27
    • 0001118530 scopus 로고    scopus 로고
    • A new class of optimal high order strong stability preserving time discretization methods
    • R.J. Spiteri S.J. Ruuth 2002 A new class of optimal high order strong stability preserving time discretization methods SIAM J. Numer. Anal. 40 469 491
    • (2002) SIAM J. Numer. Anal. , vol.40 , pp. 469-491
    • Spiteri, R.J.1    Ruuth, S.J.2
  • 28
    • 0030269186 scopus 로고    scopus 로고
    • Additive semi-implicit Runge-Kutta methods for computing high speed nonequilibrium reactive flows
    • X. Zhong 1996 Additive semi-implicit Runge-Kutta methods for computing high speed nonequilibrium reactive flows J. Comput. Phys. 128 19 31
    • (1996) J. Comput. Phys. , vol.128 , pp. 19-31
    • Zhong, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.