-
1
-
-
0001356367
-
Non-linear stability of a general class of differential equation methods
-
K. BURRAGE AND J.C. BUTCHER (1980), Non-linear stability of a general class of differential equation methods, BIT, 20, pp. 185-203.
-
(1980)
BIT
, vol.20
, pp. 185-203
-
-
Burrage, K.1
Butcher, J.C.2
-
4
-
-
0032345207
-
Total-variation-diminishing Runge-Kutta schemes
-
S. GOTTLIEB AND C.-W. SHU (1998), Total-variation-diminishing Runge-Kutta schemes, Math. Comp., 67, pp. 73-85.
-
(1998)
Math. Comp.
, vol.67
, pp. 73-85
-
-
Gottlieb, S.1
Shu, C.-W.2
-
5
-
-
0035273564
-
Strong-stability-preserving high-order time discretization methods
-
S. GOTTLIEB, C.-W. SHU, AND E. TADMOR (2001), Strong-stability-preserving high-order time discretization methods, SIAM Rev., 43, pp. 89-112.
-
(2001)
SIAM Rev.
, vol.43
, pp. 89-112
-
-
Gottlieb, S.1
Shu, C.-W.2
Tadmor, E.3
-
7
-
-
40749159424
-
High resolution schemes for hyperbolic conservation laws
-
A. HARTEN (1983), High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, pp. 357-393.
-
(1983)
J. Comput. Phys.
, vol.49
, pp. 357-393
-
-
Harten, A.1
-
8
-
-
2342460322
-
Monotonicity-preserving linear multistep methods
-
W. HUNDSDORFER, S. J. RUUTH, AND R. J. SPITERI (2003), Monotonicity-preserving linear multistep methods, SIAM J. Numer. Anal., 41, pp. 605-623.
-
(2003)
SIAM J. Numer. Anal.
, vol.41
, pp. 605-623
-
-
Hundsdorfer, W.1
Ruuth, S.J.2
Spiteri, R.J.3
-
9
-
-
6344271704
-
Numerical solution of time-dependent advection-diffusion-reaction equations
-
Springer-Verlag, Berlin
-
W. HUNDSDORFER AND J. G. VERWER (2003), Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer Ser. Comput. Math. 33, Springer-Verlag, Berlin.
-
(2003)
Springer Ser. Comput. Math.
, vol.33
-
-
Hundsdorfer, W.1
Verwer, J.G.2
-
10
-
-
0000645124
-
Stability of explicit time discretizations for solving initial value problems
-
R. JELTSCH AND O. NEVANLINNA (1981), Stability of explicit time discretizations for solving initial value problems, Numer. Math., 37, pp. 61-91.
-
(1981)
Numer. Math.
, vol.37
, pp. 61-91
-
-
Jeltsch, R.1
Nevanlinna, O.2
-
11
-
-
0034316651
-
Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations
-
C. K. KENNEDY, M. H. CARPENTER, AND R. M. LEWIS (2000), Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations, Appl. Numer. Math, 35, pp. 177-219.
-
(2000)
Appl. Numer. Math
, vol.35
, pp. 177-219
-
-
Kennedy, C.K.1
Carpenter, M.H.2
Lewis, R.M.3
-
12
-
-
0000625694
-
Contractivity of Runge-Kutta methods
-
J. F. B. M KRAAIJEVANGER (1991), Contractivity of Runge-Kutta methods, BIT, 31, pp. 482-528.
-
(1991)
BIT
, vol.31
, pp. 482-528
-
-
Kraaijevanger, J.F.B.M.1
-
13
-
-
0001813542
-
Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems
-
J. F. B. M. KRAAIJEVANGER (1986), Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems, Numer. Math., 48, pp. 303-322.
-
(1986)
Numer. Math.
, vol.48
, pp. 303-322
-
-
Kraaijevanger, J.F.B.M.1
-
14
-
-
0004186233
-
-
Wiley, Chichester, UK, and Teubner, Stuttgart, Germany
-
D. KRÖNER (1997), Numerical Schemes for Conservation Laws, Wiley, Chichester, UK, and Teubner, Stuttgart, Germany.
-
(1997)
Numerical Schemes for Conservation Laws
-
-
Kröner, D.1
-
15
-
-
0004238155
-
-
Cambridge University Press, Cambridge, UK
-
C. B. LANEY (1998), Computational Gasdynamics, Cambridge University Press, Cambridge, UK.
-
(1998)
Computational Gasdynamics
-
-
Laney, C.B.1
-
17
-
-
0019017735
-
Stability of difference approximations to a diffusion-convection equation
-
K. W. MORTON (1980), Stability of difference approximations to a diffusion-convection equation, Internat. J. Numer. Methods Engrg., 15, pp. 677-683.
-
(1980)
Internat. J. Numer. Methods Engrg.
, vol.15
, pp. 677-683
-
-
Morton, K.W.1
-
18
-
-
0013150498
-
Two barriers on strong-stability-preserving time discretization methods
-
S. RUUTH AND R. SPITERI (2002), Two barriers on strong-stability- preserving time discretization methods, J. Sci. Comput., 17, pp. 211-220.
-
(2002)
J. Sci. Comput.
, vol.17
, pp. 211-220
-
-
Ruuth, S.1
Spiteri, R.2
-
19
-
-
21244435998
-
On the extension of Lipschitz maps
-
S. O. SCHÖNBECK (1967), On the extension of Lipschitz maps, Ark. Mat., 7, pp. 201-209.
-
(1967)
Ark. Mat.
, vol.7
, pp. 201-209
-
-
Schönbeck, S.O.1
-
20
-
-
3042794331
-
A survey of strong stability preserving high-order time discretizations
-
D. Estep and S. Tavener, eds., SIAM, Philadelphia
-
C.-W. SHU (2002), A survey of strong stability preserving high-order time discretizations, in Collected Lectures on the Preservation of Stability Under Discretization, D. Estep and S. Tavener, eds., SIAM, Philadelphia, pp. 51-65.
-
(2002)
Collected Lectures on the Preservation of Stability under Discretization
, pp. 51-65
-
-
Shu, C.-W.1
-
21
-
-
45449125925
-
Efficient implementation of essentially non-oscillatory shock-capturing schemes
-
C.-W. SHU AND S. OSHER (1988), Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, pp. 439-471.
-
(1988)
J. Comput. Phys.
, vol.77
, pp. 439-471
-
-
Shu, C.-W.1
Osher, S.2
-
22
-
-
0040109369
-
Contractivity in the numerical solution of initial value problems
-
M. N. SPIJKER (1983), Contractivity in the numerical solution of initial value problems, Numer. Math., 42, pp. 271-290.
-
(1983)
Numer. Math.
, vol.42
, pp. 271-290
-
-
Spijker, M.N.1
-
23
-
-
21244504279
-
Monotonicity and boundedness in implicit Runge-Kutta methods
-
M. N. SPIJKER (1986), Monotonicity and boundedness in implicit Runge-Kutta methods, Numer. Math., 50, pp. 97-109.
-
(1986)
Numer. Math.
, vol.50
, pp. 97-109
-
-
Spijker, M.N.1
-
24
-
-
0001118530
-
A new class of optimal high-order strong-stability-preserving time discretization methods
-
R. SPITERI AND S. RUUTH (2002), A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM J. Numer. Anal., 40, pp. 469-491.
-
(2002)
SIAM J. Numer. Anal.
, vol.40
, pp. 469-491
-
-
Spiteri, R.1
Ruuth, S.2
|