메뉴 건너뛰기




Volumn 21, Issue 2, 2004, Pages 193-223

On strong stability preserving time discretization methods

Author keywords

Monotonicity; Runge Kutta methods; SSP; Strong stability preserving

Indexed keywords

APPROXIMATION THEORY; INTEGRATION; LINEAR EQUATIONS; NONLINEAR EQUATIONS; ORDINARY DIFFERENTIAL EQUATIONS; PROBLEM SOLVING;

EID: 3042714776     PISSN: 08857474     EISSN: None     Source Type: Journal    
DOI: 10.1023/B:JOMP.0000030075.59237.61     Document Type: Article
Times cited : (79)

References (18)
  • 3
    • 3042712637 scopus 로고    scopus 로고
    • Stepsize restrictions for the total-variationdiminishing property in general Runge-Kutta methods
    • Report No. MI 2002-21 September 2002, Mathematical Institute, University of Leiden, to appear in
    • Ferrracina, L., and Spijker, M. N. (2002). Stepsize restrictions for the total-variationdiminishing property in general Runge-Kutta methods. Report No. MI 2002-21, September 2002, Mathematical Institute, University of Leiden, to appear in Mathematics of Computation.
    • (2002) Mathematics of Computation
    • Ferrracina, L.1    Spijker, M.N.2
  • 5
    • 0035273564 scopus 로고    scopus 로고
    • Strong stability-preserving high order time discretization methods
    • Gottlieb, S., Shu, C. W., and Tadmor, E. (2001). Strong stability-preserving high order time discretization methods. SIAM Rev. 43, 89-112.
    • (2001) SIAM Rev. , vol.43 , pp. 89-112
    • Gottlieb, S.1    Shu, C.W.2    Tadmor, E.3
  • 6
    • 0032345207 scopus 로고    scopus 로고
    • Total variation diminishing Runge-Kutta schemes
    • Gottlieb, S., and Shu, C. W. (1998). Total variation diminishing Runge-Kutta schemes. Math. Comp. 67, 73-85.
    • (1998) Math. Comp. , vol.67 , pp. 73-85
    • Gottlieb, S.1    Shu, C.W.2
  • 7
    • 0347900506 scopus 로고    scopus 로고
    • Strong stability preserving properties of Runge-Kutta time discretization methods for linear constant coefficient operators
    • Gottlieb, S., and Gottlieb, L. J. (2003). Strong stability preserving properties of Runge-Kutta time discretization methods for linear constant coefficient operators. J. Sci. Comput. 18, 83-109.
    • (2003) J. Sci. Comput. , vol.18 , pp. 83-109
    • Gottlieb, S.1    Gottlieb, L.J.2
  • 8
    • 3042837090 scopus 로고    scopus 로고
    • Monotonicity for Runge-Kutta methods: Inner product norms
    • Submitted for publication in
    • Higueras, I. (2003). Monotonicity for Runge-Kutta methods: Inner product norms. Submitted for publication in J. Sci. Comput.
    • (2003) J. Sci. Comput.
    • Higueras, I.1
  • 9
    • 14844335638 scopus 로고    scopus 로고
    • Representations of Runge-Kutta methods and strong stability preserving methods
    • Preprint 2 (2003), Section 1. Departamento de Matemática e Informática. Universidad Pública de Navarra. Submitted for publication in
    • Higueras, I. (2003). Representations of Runge-Kutta methods and strong stability preserving methods. Preprint 2 (2003), Section 1. Departamento de Matemática e Informática. Universidad Pública de Navarra. Submitted for publication in SIAM J. Numer. Anal.
    • (2003) SIAM J. Numer. Anal.
    • Higueras, I.1
  • 10
    • 0001813542 scopus 로고
    • Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems
    • Kraaijevanger, J. F. B. M. (1986). Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems. Numer. Math. 48, 303-322.
    • (1986) Numer. Math. , vol.48 , pp. 303-322
    • Kraaijevanger, J.F.B.M.1
  • 11
    • 0000625694 scopus 로고
    • Contractivity of Runge-Kutta methods
    • Kraaijevanger, J. F. B. M. (1991). Contractivity of Runge-Kutta methods. BIT 31, 482-528.
    • (1991) BIT , vol.31 , pp. 482-528
    • Kraaijevanger, J.F.B.M.1
  • 12
    • 0013150498 scopus 로고    scopus 로고
    • Two barriers on strong stability preserving time discretization methods
    • Ruuth, S. J., and Spiteri, R. J. (2002). Two barriers on strong stability preserving time discretization methods. J. Sci. Comput. 17, 211-220.
    • (2002) J. Sci. Comput. , vol.17 , pp. 211-220
    • Ruuth, S.J.1    Spiteri, R.J.2
  • 13
    • 45449125925 scopus 로고
    • Efficient implementation of essentially non-oscillatory shock-capturing schemes
    • Shu, C. W., and Osher, S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439-471.
    • (1988) J. Comput. Phys. , vol.77 , pp. 439-471
    • Shu, C.W.1    Osher, S.2
  • 14
    • 0000564951 scopus 로고
    • Total variation diminishing time discretizations
    • Shu, C. W. (1988). Total variation diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073-1084.
    • (1988) SIAM J. Sci. Stat. Comput. , vol.9 , pp. 1073-1084
    • Shu, C.W.1
  • 15
    • 3042794331 scopus 로고    scopus 로고
    • A survey of strong stability preserving high order time discretizations. Collected lectures on the preservation of stability under discretization
    • Estep, D., and Tavener, S. (eds.), SIAM
    • Shu, C. W. (2002). A survey of strong stability preserving high order time discretizations. Collected lectures on the preservation of stability under discretization. In Estep, D., and Tavener, S. (eds.), Proceedings in Applied Mathematics, Vol. 109, SIAM, pp. 51-65.
    • (2002) Proceedings in Applied Mathematics , vol.109 , pp. 51-65
    • Shu, C.W.1
  • 16
    • 0040109369 scopus 로고
    • Contractivity in the numerical solution of initial value problems
    • Spijker, M. N. (1983). Contractivity in the numerical solution of initial value problems. Numer. Math. 42, 271-290.
    • (1983) Numer. Math. , vol.42 , pp. 271-290
    • Spijker, M.N.1
  • 17
    • 84966240305 scopus 로고
    • Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems
    • Spijker, M. N. (1985). Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems. Math. Comp. 45, 377-392.
    • (1985) Math. Comp. , vol.45 , pp. 377-392
    • Spijker, M.N.1
  • 18
    • 0001118530 scopus 로고    scopus 로고
    • A new class of optimal high order strong stability preserving time discretization methods
    • Spiteri, R. J., and Ruuth, S. J. (2002). A new class of optimal high order strong stability preserving time discretization methods. SIAM J. Numer. Anal. 40, 469-491.
    • (2002) SIAM J. Numer. Anal. , vol.40 , pp. 469-491
    • Spiteri, R.J.1    Ruuth, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.