메뉴 건너뛰기




Volumn 43, Issue 3, 2005, Pages 924-948

Representations of Runge-kutta methods and strong stability preserving methods

Author keywords

Absolutely monotonic; CFL coefficient; Radius of absolute monotonicity; Representations; Runge Kutta; SSP; Strong stability preserving

Indexed keywords

COMPUTATIONAL COMPLEXITY; COMPUTATIONAL METHODS; NUMERICAL ANALYSIS; PROBLEM SOLVING; STABILITY;

EID: 33745451166     PISSN: 00361429     EISSN: None     Source Type: Journal    
DOI: 10.1137/S0036142903427068     Document Type: Article
Times cited : (79)

References (16)
  • 1
    • 0003239298 scopus 로고
    • Stability of Runge-Kutta methods for stiff nonlinear differential equations
    • North-Holland, Amsterdam
    • K. DEKKER AND J. G. VERWEH, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, CWI Monogr. 2, North-Holland, Amsterdam, 1984.
    • (1984) CWI Monogr. , vol.2
    • Dekker, K.1    Verweh, J.G.2
  • 2
    • 14844318467 scopus 로고    scopus 로고
    • Stepsize restrictions for the total-variation-diminishing property in general Runge-Kutta methods
    • L. FERRACINA AND M. N. SPIJKER, Stepsize restrictions for the total-variation-diminishing property in general Runge-Kutta methods, SIAM J. Numer. Anal., 42 (2004), pp. 1073-1093.
    • (2004) SIAM J. Numer. Anal. , vol.42 , pp. 1073-1093
    • Ferracina, L.1    Spijker, M.N.2
  • 3
    • 11244318599 scopus 로고    scopus 로고
    • An extension and analysis of the Shu-Osher representation of Runge-Kutta methods
    • L. FERRACINA AND M. N. SPIJKER, An extension and analysis of the Shu-Osher representation of Runge-Kutta methods, Math. Comp., 74 (2005), pp. 201-219.
    • (2005) Math. Comp. , vol.74 , pp. 201-219
    • Ferracina, L.1    Spijker, M.N.2
  • 4
    • 0035273564 scopus 로고    scopus 로고
    • Strong stability-preserving high-order time discretization methods
    • S. GOTTLIEB, C.-W. SHU, AND E. TADMOR, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), pp. 89-112.
    • (2001) SIAM Rev. , vol.43 , pp. 89-112
    • Gottlieb, S.1    Shu, C.-W.2    Tadmor, E.3
  • 5
    • 0032345207 scopus 로고    scopus 로고
    • Total variation diminishing Runge-Kutta schemes
    • S. GOTTLIEB AND C.-W. SHU, Total variation diminishing Runge-Kutta schemes, Math. Comp., 67 (1998), pp. 73-85.
    • (1998) Math. Comp. , vol.67 , pp. 73-85
    • Gottlieb, S.1    Shu, C.-W.2
  • 6
    • 0347900506 scopus 로고    scopus 로고
    • Strong stability preserving properties of Runge-Kutta time discretization methods for linear constant coefficient operators
    • S. GOTTLIEB AND L. J. GOTTLIEB, Strong stability preserving properties of Runge-Kutta time discretization methods for linear constant coefficient operators, J. Sci. Comput., 18 (2003), pp. 83-109.
    • (2003) J. Sci. Comput. , vol.18 , pp. 83-109
    • Gottlieb, S.1    Gottlieb, L.J.2
  • 7
    • 0000625694 scopus 로고
    • Contractivity of Runge-Kutta methods
    • J. F. B. M. KRAAIJEVANGER, Contractivity of Runge-Kutta methods, BIT, 31 (1991), pp. 482-528.
    • (1991) BIT , vol.31 , pp. 482-528
    • Kraaijevanger, J.F.B.M.1
  • 11
    • 0013150498 scopus 로고    scopus 로고
    • Two barriers on strong stability preserving time discretization methods
    • S. J. RUUTH AND R. J. SPITERI, Two barriers on strong stability preserving time discretization methods, J. Sci. Comput., 17 (2002), pp. 211-220.
    • (2002) J. Sci. Comput. , vol.17 , pp. 211-220
    • Ruuth, S.J.1    Spiteri, R.J.2
  • 12
    • 14844365146 scopus 로고    scopus 로고
    • High-order strong-stability-preserving Runge-Kutta methods with downwind-biased spatial discretizations
    • S. J. RUUTH AND R. J. SPITERI, High-order strong-stability-preserving Runge-Kutta methods with downwind-biased spatial discretizations, SIAM J. Numer. Anal., 42 (2004), pp. 974-996.
    • (2004) SIAM J. Numer. Anal. , vol.42 , pp. 974-996
    • Ruuth, S.J.1    Spiteri, R.J.2
  • 13
    • 45449125925 scopus 로고
    • Efficient implementation of essentially non-oscillatory shock-capturing schemes
    • C.-W. SHU AND S. OSHER, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), pp. 439-471.
    • (1988) J. Comput. Phys. , vol.77 , pp. 439-471
    • Shu, C.-W.1    Osher, S.2
  • 14
    • 0000564951 scopus 로고
    • Total-variation-diminishing time discretizations
    • C.-W. SHU, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 1073-1084.
    • (1988) SIAM J. Sci. Statist. Comput. , vol.9 , pp. 1073-1084
    • Shu, C.-W.1
  • 15
    • 3042794331 scopus 로고    scopus 로고
    • A survey of strong stability preserving high order time discretizations
    • Collected Lectures on the Preservation of Stability under Discretization, D. Estep and T. Tavener, eds., SIAM, Philadelphia
    • C.-W. SHU, A survey of strong stability preserving high order time discretizations, in Collected Lectures on the Preservation of Stability under Discretization, D. Estep and T. Tavener, eds., Proc. Appl. Math. 109, SIAM, Philadelphia, 2002, pp. 51-65.
    • (2002) Proc. Appl. Math. , vol.109 , pp. 51-65
    • Shu, C.-W.1
  • 16
    • 0001118530 scopus 로고    scopus 로고
    • A new class of optimal high-order strong-stability-preserving time discretization methods
    • R. J. SPITERI AND S. J. RUUTH, A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM J. Numer. Anal., 40 (2002), pp. 469-491.
    • (2002) SIAM J. Numer. Anal. , vol.40 , pp. 469-491
    • Spiteri, R.J.1    Ruuth, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.