메뉴 건너뛰기




Volumn 45, Issue 3, 2007, Pages 1226-1245

Stepsize conditions for general monotonicity in numerical initial value problems

Author keywords

General linear method; Initial value problem; Method of lines; Monotonicity; Ordinary differential equation; Strong stability preseiving; Total variation diminishing

Indexed keywords

BOUNDARY VALUE PROBLEMS; CANNING; DECODING; DIFFERENTIAL EQUATIONS; EIGENVALUES AND EIGENFUNCTIONS; INITIAL VALUE PROBLEMS; NUMERICAL METHODS; STABILITY; SYSTEM STABILITY; THEOREM PROVING;

EID: 46949088290     PISSN: 00361429     EISSN: None     Source Type: Journal    
DOI: 10.1137/060661739     Document Type: Article
Times cited : (69)

References (31)
  • 1
    • 0031269714 scopus 로고    scopus 로고
    • Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations
    • U. M. ASCHER. S. J. RUUTH. AND R. J. SPITERI, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., 25 (1997), pp. 151-167.
    • (1997) Appl. Numer. Math , vol.25 , pp. 151-167
    • ASCHER, U.M.1    RUUTH, S.J.2    SPITERI, R.J.3
  • 2
    • 0001356367 scopus 로고
    • Nonlinear stability of a general class of differential equation methods
    • K. BURRAGE AND J. C. BUTCHER, Nonlinear stability of a general class of differential equation methods, BIT, 20 (1980), pp. 185-203.
    • (1980) BIT , vol.20 , pp. 185-203
    • BURRAGE, K.1    BUTCHER, J.C.2
  • 3
    • 84968505795 scopus 로고
    • On the convergence, of numerical solutions to ordinary differential equations
    • J. C. BUTCHER, On the convergence, of numerical solutions to ordinary differential equations, Math. Comp., 20 (1966), pp. 1 -10.
    • (1966) Math. Comp , vol.20 , pp. 1-10
    • BUTCHER, J.C.1
  • 4
    • 46949088076 scopus 로고    scopus 로고
    • J. C. BUTCHER, The Numerical Analysis of Ordinary Differential Equations, John Wiley, Chichester, UK. 1987.
    • J. C. BUTCHER, The Numerical Analysis of Ordinary Differential Equations, John Wiley, Chichester, UK. 1987.
  • 6
    • 14844318467 scopus 로고    scopus 로고
    • Stepsize restrictions for the total-variation-diminishing property in general Runge-Kutta methods
    • L. FERRACINA AND M. N. SPIJKER, Stepsize restrictions for the total-variation-diminishing property in general Runge-Kutta methods, SIAM J. Numer. Anal., 42 (2004), pp. 1073 1093.
    • (2004) SIAM J. Numer. Anal , vol.42 , pp. 1073-1093
    • FERRACINA, L.1    SPIJKER, M.N.2
  • 7
    • 11244318599 scopus 로고    scopus 로고
    • An extension and analysts of the Shu-Osher representation o/ Runge-Kutta methods
    • L. FERRACINA AND M. N. SPIJKER, An extension and analysts of the Shu-Osher representation o/ Runge-Kutta methods, Math. Comp., 74 (2005), pp. 201-219.
    • (2005) Math. Comp , vol.74 , pp. 201-219
    • FERRACINA, L.1    SPIJKER, M.N.2
  • 8
    • 28844507125 scopus 로고    scopus 로고
    • On high order strong stability preserving Runge-Kutta and multi step time discretizations
    • S. GOTTLIEB, On high order strong stability preserving Runge-Kutta and multi step time discretizations, J. Sci. Comput., 25 (2005), pp. 105-128.
    • (2005) J. Sci. Comput , vol.25 , pp. 105-128
    • GOTTLIEB, S.1
  • 9
    • 0032345207 scopus 로고    scopus 로고
    • Total variation diminishing Runge-Kutta schemes
    • S. GOTTLIEB AND C-W. SHU, Total variation diminishing Runge-Kutta schemes, Math. Comp., 67 (1998), pp. 73 85.
    • (1998) Math. Comp , vol.67 , pp. 73-85
    • GOTTLIEB, S.1    SHU, C.-W.2
  • 10
    • 0035273564 scopus 로고    scopus 로고
    • Strong stability-preserving high-order time discretization methods
    • S. GOTTLIEB, C.-W. SHU. AND E. TADMOR, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), pp. 89 112.
    • (2001) SIAM Rev , vol.43 , pp. 89-112
    • GOTTLIEB, S.1    SHU, C.-W.2    TADMOR, E.3
  • 11
    • 46949106818 scopus 로고    scopus 로고
    • E. HAIRER AND G. WANNER, Solving Ordinary Differential Equations. II. Stiff and DifferentialAlgebraic Problems, 2nd ed., Springer-Verlag, Berlin, 1996.
    • E. HAIRER AND G. WANNER, Solving Ordinary Differential Equations. II. Stiff and DifferentialAlgebraic Problems, 2nd ed., Springer-Verlag, Berlin, 1996.
  • 12
    • 46949086277 scopus 로고    scopus 로고
    • E. HAIRER, S. P. NØRSETT, AND G. WANNER, Solving Ordinary Differential Equations. I. Nonstiff Problems, Springer-Verlag, Berlin, 1987.
    • E. HAIRER, S. P. NØRSETT, AND G. WANNER, Solving Ordinary Differential Equations. I. Nonstiff Problems, Springer-Verlag, Berlin, 1987.
  • 13
    • 40749159424 scopus 로고
    • High resolution schemes for hyperbolic conservation laws
    • A. HARTEN, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49 (1983), pp. 357-393.
    • (1983) J. Comput. Phys , vol.49 , pp. 357-393
    • HARTEN, A.1
  • 14
    • 3042714776 scopus 로고    scopus 로고
    • On strong stability preserving time discretization methods
    • I. HIGUERAS, On strong stability preserving time discretization methods, J. Sci. Comput., 21 (2004), pp. 193-223.
    • (2004) J. Sci. Comput , vol.21 , pp. 193-223
    • HIGUERAS, I.1
  • 15
    • 34547535337 scopus 로고    scopus 로고
    • Strong stability for additive Runge-Kutta methods
    • I. HIGUERAS, Strong stability for additive Runge-Kutta methods, SIAM J. Numer. Anal., 44 (2006), pp. 1735-1758.
    • (2006) SIAM J. Numer. Anal , vol.44 , pp. 1735-1758
    • HIGUERAS, I.1
  • 16
    • 33745451166 scopus 로고    scopus 로고
    • Representations of Runge-Kutta methods and strong stability preserving methods
    • I. HIGUERAS, Representations of Runge-Kutta methods and strong stability preserving methods, SIAM J. Numer. Anal., 43 (2005), pp. 924-948.
    • (2005) SIAM J. Numer. Anal , vol.43 , pp. 924-948
    • HIGUERAS, I.1
  • 17
    • 0004151494 scopus 로고
    • Cambridge University Press, Cambridge, UK
    • R. A. HORN AND C. R. JOHNSON, Matrix Analysis, Cambridge University Press, Cambridge, UK, 1988.
    • (1988) Matrix Analysis
    • HORN, R.A.1    JOHNSON, C.R.2
  • 18
    • 0032183717 scopus 로고    scopus 로고
    • Positivity of Runge-Kutta and diagonally split Runge-Kutta methods
    • Z. HORVÁTH, Positivity of Runge-Kutta and diagonally split Runge-Kutta methods, Appl. Numer. Math., 28 (1998), pp. 309-326.
    • (1998) Appl. Numer. Math , vol.28 , pp. 309-326
    • HORVÁTH, Z.1
  • 19
    • 46949104761 scopus 로고    scopus 로고
    • W. H. HUNDSDORFER AND S. J. RUUTH, Monotonicity for Time Discretizations, Dundee Conference Report NA/217 2003, D. F. Griffiths and G. A. Watson, eds., University of Dundee, Dundee, UK, 2003, pp. 85-94.
    • W. H. HUNDSDORFER AND S. J. RUUTH, Monotonicity for Time Discretizations, Dundee Conference Report NA/217 2003, D. F. Griffiths and G. A. Watson, eds., University of Dundee, Dundee, UK, 2003, pp. 85-94.
  • 21
    • 6344271704 scopus 로고    scopus 로고
    • Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations
    • Springer-Verlag, Berlin
    • W. H. HUNDSDORFER AND J. G. VERWER, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer Ser. Comput. Math. 33, Springer-Verlag, Berlin, 2003.
    • (2003) Springer Ser. Comput. Math , vol.33
    • HUNDSDORFER, W.H.1    VERWER, J.G.2
  • 22
    • 0001164459 scopus 로고
    • A general class of two-step Runge-Kutta methods for ordinary differential equations
    • Z. JACKIEWICZ AND S. TRACOGNA, A general class of two-step Runge-Kutta methods for ordinary differential equations, SIAM J. Numer. Anal., 32 (1995), pp. 1390-1427.
    • (1995) SIAM J. Numer. Anal , vol.32 , pp. 1390-1427
    • JACKIEWICZ, Z.1    TRACOGNA, S.2
  • 23
    • 0037216570 scopus 로고    scopus 로고
    • Additive Runge-Kutta schemes for convectiondiffusion-reaction equations
    • C. A. KENNEDY AND M. H. CARPENTER, Additive Runge-Kutta schemes for convectiondiffusion-reaction equations, Appl. Numer. Math., 44 (2003), pp. 139-181.
    • (2003) Appl. Numer. Math , vol.44 , pp. 139-181
    • KENNEDY, C.A.1    CARPENTER, M.H.2
  • 24
    • 0000625694 scopus 로고
    • Contractivity of Runge-Kutta methods
    • J. F. B. M. KRAAIJEVANGER, Contractivity of Runge-Kutta methods, BIT, 31 (1991), pp. 482-528.
    • (1991) BIT , vol.31 , pp. 482-528
    • KRAAIJEVANGER, J.F.B.M.1
  • 25
    • 84966211896 scopus 로고
    • Contractivity-preserving implicit linear multistep methods
    • H. W. J. LENFERINK, Contractivity-preserving implicit linear multistep methods, Math. Comp., 56 (1991), pp. 177-199.
    • (1991) Math. Comp , vol.56 , pp. 177-199
    • LENFERINK, H.W.J.1
  • 27
    • 32944469214 scopus 로고    scopus 로고
    • Global optimization of explicit strong-stability-preserving Runge-Kutta methods
    • S. J. RUUTH, Global optimization of explicit strong-stability-preserving Runge-Kutta methods, Math. Comp., 75 (2006), pp. 183-207.
    • (2006) Math. Comp , vol.75 , pp. 183-207
    • RUUTH, S.J.1
  • 28
    • 0000564951 scopus 로고
    • Total-variation-diminishing time discretizations
    • C.-W. SHU, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 1073-1084.
    • (1988) SIAM J. Sci. Statist. Comput , vol.9 , pp. 1073-1084
    • SHU, C.-W.1
  • 29
    • 3042794331 scopus 로고    scopus 로고
    • A survey of strong stability preserving high order time discretizations
    • D. Estep and S. Tavener, eds, SIAM, Philadelphia
    • C.-W. SHU, A survey of strong stability preserving high order time discretizations, in Collected Lectures on the Preservation of Stability under Discretization, D. Estep and S. Tavener, eds., SIAM, Philadelphia, 2002, pp. 51-65.
    • (2002) Collected Lectures on the Preservation of Stability under Discretization , pp. 51-65
    • SHU, C.-W.1
  • 30
    • 45449125925 scopus 로고
    • Efficient implementation of essentially nonoscillatory shockcapturing schemes
    • C.-W. SHU AND S. OSHER, Efficient implementation of essentially nonoscillatory shockcapturing schemes, J. Comput. Phys., 77 (1988), pp. 439-471.
    • (1988) J. Comput. Phys , vol.77 , pp. 439-471
    • SHU, C.-W.1    OSHER, S.2
  • 31
    • 0001118530 scopus 로고    scopus 로고
    • A new class of optimal high-order strong-stability-preserving time discretization methods
    • R. J. SPITERI AND S. J. RUUTH, A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM J. Numer. Anal., 40 (2002), pp. 469-491.
    • (2002) SIAM J. Numer. Anal , vol.40 , pp. 469-491
    • SPITERI, R.J.1    RUUTH, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.