메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Engineering yeast for high-level production of stilbenoid antioxidants

Author keywords

[No Author keywords available]

Indexed keywords

ANTIOXIDANT; ARABIDOPSIS PROTEIN; CYTOCHROME P450; MALONYL COENZYME A; PHENYLALANINE; PINOSTILBENE; PTEROSTILBENE; RESVERATROL; STILBENE DERIVATIVE;

EID: 84994894996     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep36827     Document Type: Article
Times cited : (134)

References (45)
  • 2
    • 0031839670 scopus 로고    scopus 로고
    • Resveratrol, a phytoestrogen found in red wine A possible explanation for the conundrum of the 'French paradox'
    • Kopp, P. Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the 'French paradox' Eur J Endocrinol 138, 619-620 (1998)
    • (1998) Eur J Endocrinol , vol.138 , pp. 619-620
    • Kopp, P.1
  • 3
    • 33749646867 scopus 로고    scopus 로고
    • Significance of wine and resveratrol in cardiovascular disease: French paradox revisited
    • Vidavalur, R., Otani, H., Singal, P. K. & Maulik, N. Significance of wine and resveratrol in cardiovascular disease: French paradox revisited. Exp Clin Cardiol 11, 217-225 (2006)
    • (2006) Exp Clin Cardiol , vol.11 , pp. 217-225
    • Vidavalur, R.1    Otani, H.2    Singal, P.K.3    Maulik, N.4
  • 4
    • 67449123012 scopus 로고    scopus 로고
    • Regulation of cell survival by resveratrol involves inhibition of NF kappa B-regulated gene expression in prostate cancer cells
    • Benitez, D. A., Hermoso, M. A., Pozo-Guisado, E., Fernandez-Salguero, P. M. & Castellon, E. A. Regulation of cell survival by resveratrol involves inhibition of NF kappa B-regulated gene expression in prostate cancer cells. Prostate 69, 1045-1054 (2009)
    • (2009) Prostate , vol.69 , pp. 1045-1054
    • Benitez, D.A.1    Hermoso, M.A.2    Pozo-Guisado, E.3    Fernandez-Salguero, P.M.4    Castellon, E.A.5
  • 5
    • 65549134823 scopus 로고    scopus 로고
    • Resveratrol enhances ultraviolet B-induced cell death through nuclear factor-kappaB pathway in human epidermoid carcinoma A431 cells
    • Roy, P. et al. Resveratrol enhances ultraviolet B-induced cell death through nuclear factor-kappaB pathway in human epidermoid carcinoma A431 cells. Biochem Biophys Res Commun 384, 215-220 (2009)
    • (2009) Biochem Biophys Res Commun , vol.384 , pp. 215-220
    • Roy, P.1
  • 6
    • 33751072349 scopus 로고    scopus 로고
    • Resveratrol improves health and survival of mice on a high-calorie diet
    • Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337-342 (2006)
    • (2006) Nature , vol.444 , pp. 337-342
    • Baur, J.A.1
  • 7
    • 34249277449 scopus 로고    scopus 로고
    • Interaction of resveratrol and its trimethyl and triacetyl derivatives with biomembrane models studied by differential scanning calorimetry
    • Sarpietro, M. G., Spatafora, C., Tringali, C., Micieli, D. & Castelli, F. Interaction of resveratrol and its trimethyl and triacetyl derivatives with biomembrane models studied by differential scanning calorimetry. J Agric Food Chem 55, 3720-3728 (2007)
    • (2007) J Agric Food Chem , vol.55 , pp. 3720-3728
    • Sarpietro, M.G.1    Spatafora, C.2    Tringali, C.3    Micieli, D.4    Castelli, F.5
  • 8
    • 84898741488 scopus 로고    scopus 로고
    • Extraction of natural products: Principles and fundamental aspects
    • Londres: RSC Publishing
    • Palma, M. et al. Extraction of natural products: Principles and fundamental aspects. Natural Product Extraction: Principles and Applications. Londres: RSC Publishing, 58-88 (2013)
    • (2013) Natural Product Extraction: Principles and Applications , pp. 58-88
    • Palma, M.1
  • 9
    • 1642401219 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol
    • Becker, J. V. et al. Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res 4, 79-85 (2003)
    • (2003) FEMS Yeast Res , vol.4 , pp. 79-85
    • Becker, J.V.1
  • 10
    • 33747371394 scopus 로고    scopus 로고
    • Production of resveratrol in recombinant microorganisms
    • Beekwilder, J. et al. Production of resveratrol in recombinant microorganisms. Appl Environ Microbiol 72, 5670-5672 (2006)
    • (2006) Appl Environ Microbiol , vol.72 , pp. 5670-5672
    • Beekwilder, J.1
  • 11
    • 84937466233 scopus 로고    scopus 로고
    • Metabolic engineering for resveratrol derivative biosynthesis in Escherichia coli
    • Jeong, Y. J. et al. Metabolic engineering for resveratrol derivative biosynthesis in Escherichia coli. Mol Cells 38, 318-326 (2015)
    • (2015) Mol Cells , vol.38 , pp. 318-326
    • Jeong, Y.J.1
  • 12
    • 77952268311 scopus 로고    scopus 로고
    • Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium
    • Sydor, T., Schaffer, S. & Boles, E. Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Applied and environmental microbiology 76, 3361-3363 (2010)
    • (2010) Applied and Environmental Microbiology , vol.76 , pp. 3361-3363
    • Sydor, T.1    Schaffer, S.2    Boles, E.3
  • 13
    • 84929836207 scopus 로고    scopus 로고
    • Pterostilbene production by microorganisms expressing resveratrol O-methyltransferase
    • Wang, Y., Bhuiya, M. W., Zhou, R. & Yu, O. Pterostilbene production by microorganisms expressing resveratrol O-methyltransferase. Annals of Microbiology 65, 817-826 (2015)
    • (2015) Annals of Microbiology , vol.65 , pp. 817-826
    • Wang, Y.1    Bhuiya, M.W.2    Zhou, R.3    Yu, O.4
  • 14
    • 84855229099 scopus 로고    scopus 로고
    • Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells
    • Wang, Y. & Yu, O. Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells. J Biotechnol 157, 258-260 (2012)
    • (2012) J Biotechnol , vol.157 , pp. 258-260
    • Wang, Y.1    Yu, O.2
  • 15
    • 33749508478 scopus 로고    scopus 로고
    • Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and mammalian cells
    • Zhang, Y. et al. Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and mammalian cells. Journal of the American Chemical Society 128, 13030-13031 (2006)
    • (2006) Journal of the American Chemical Society , vol.128 , pp. 13030-13031
    • Zhang, Y.1
  • 16
    • 84864960823 scopus 로고    scopus 로고
    • Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae
    • Shin, S. Y., Jung, S. M., Kim, M. D., Han, N. S. & Seo, J. H. Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae. Enzyme Microb Technol 51, 211-216 (2012)
    • (2012) Enzyme Microb Technol , vol.51 , pp. 211-216
    • Shin, S.Y.1    Jung, S.M.2    Kim, M.D.3    Han, N.S.4    Seo, J.H.5
  • 17
    • 80052033347 scopus 로고    scopus 로고
    • Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering
    • Wang, Y. et al. Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering. Metab Eng 13, 455-463 (2011)
    • (2011) Metab Eng , vol.13 , pp. 455-463
    • Wang, Y.1
  • 18
    • 70449533072 scopus 로고    scopus 로고
    • Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae
    • Trantas, E., Panopoulos, N. & Ververidis, F. Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng 11, 355-366 (2009)
    • (2009) Metab Eng , vol.11 , pp. 355-366
    • Trantas, E.1    Panopoulos, N.2    Ververidis, F.3
  • 20
    • 84941962714 scopus 로고    scopus 로고
    • De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae
    • Li, M. et al. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab Eng 32, 1-11 (2015)
    • (2015) Metab Eng , vol.32 , pp. 1-11
    • Li, M.1
  • 21
    • 84960460639 scopus 로고    scopus 로고
    • Engineering Cellular Metabolism
    • Nielsen, J. & Keasling, J. D. Engineering Cellular Metabolism. Cell 164, 1185-1197 (2016)
    • (2016) Cell , vol.164 , pp. 1185-1197
    • Nielsen, J.1    Keasling, J.D.2
  • 22
    • 78149328427 scopus 로고    scopus 로고
    • Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae
    • Partow, S., Siewers, V., Bjorn, S., Nielsen, J. & Maury, J. Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27, 955-964 (2010)
    • (2010) Yeast , vol.27 , pp. 955-964
    • Partow, S.1    Siewers, V.2    Bjorn, S.3    Nielsen, J.4    Maury, J.5
  • 24
    • 0027369932 scopus 로고
    • Expression of human cytochrome P450 enzymes in yeast and bacteria and relevance to studies on catalytic specificity
    • Guengerich, F. P. et al. Expression of human cytochrome P450 enzymes in yeast and bacteria and relevance to studies on catalytic specificity. Toxicology 82, 21-37 (1993)
    • (1993) Toxicology , vol.82 , pp. 21-37
    • Guengerich, F.P.1
  • 25
    • 0027381070 scopus 로고
    • A model system for studying membrane biogenesis Overexpression of cytochrome b5 in yeast results in marked proliferation of the intracellular membrane
    • Vergeres, G., Yen, T. S., Aggeler, J., Lausier, J. & Waskell, L. A model system for studying membrane biogenesis. Overexpression of cytochrome b5 in yeast results in marked proliferation of the intracellular membrane. J Cell Sci 106 (Pt 1), 249-259 (1993)
    • (1993) J Cell Sci , vol.106 , pp. 249-259
    • Vergeres, G.1    Yen, T.S.2    Aggeler, J.3    Lausier, J.4    Waskell, L.5
  • 26
    • 84960906175 scopus 로고    scopus 로고
    • EasyCloneMulti: A Set of Vectors for Simultaneous and Multiple Genomic Integrations in Saccharomyces cerevisiae
    • Maury, J. et al. EasyCloneMulti: A Set of Vectors for Simultaneous and Multiple Genomic Integrations in Saccharomyces cerevisiae. PLoS One 11, e0150394 (2016)
    • (2016) PLoS One , vol.11 , pp. e0150394
    • Maury, J.1
  • 27
    • 44749095048 scopus 로고    scopus 로고
    • Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: Quantification of metabolic impact
    • Luttik, M. A. et al. Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact. Metab Eng 10, 141-153 (2008)
    • (2008) Metab Eng , vol.10 , pp. 141-153
    • Luttik, M.A.1
  • 28
    • 84903976212 scopus 로고    scopus 로고
    • Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1
    • Shi, S., Chen, Y., Siewers, V. & Nielsen, J. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. MBio 5, e01130-01114 (2014)
    • (2014) MBio , vol.5 , pp. e01130-e01114
    • Shi, S.1    Chen, Y.2    Siewers, V.3    Nielsen, J.4
  • 29
    • 33847378479 scopus 로고    scopus 로고
    • Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
    • Shiba, Y., Paradise, E. M., Kirby, J., Ro, D. K. & Keasling, J. D. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 9, 160-168 (2007)
    • (2007) Metab Eng , vol.9 , pp. 160-168
    • Shiba, Y.1    Paradise, E.M.2    Kirby, J.3    Ro, D.K.4    Keasling, J.D.5
  • 31
    • 0642312373 scopus 로고    scopus 로고
    • Synthesis and evaluation of cytotoxicity of stilbene analogues
    • Lee, S. K. et al. Synthesis and evaluation of cytotoxicity of stilbene analogues. Arch Pharm Res 26, 253-257 (2003)
    • (2003) Arch Pharm Res , vol.26 , pp. 253-257
    • Lee, S.K.1
  • 32
    • 40549119870 scopus 로고    scopus 로고
    • Pharmacometrics of pterostilbene: Preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity
    • Remsberg, C. M. et al. Pharmacometrics of pterostilbene: preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother Res 22, 169-179 (2008)
    • (2008) Phytother Res , vol.22 , pp. 169-179
    • Remsberg, C.M.1
  • 33
    • 1642576078 scopus 로고    scopus 로고
    • Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast (Saccharomyces cerevisiae): Implications for control of metabolic flux into the phenylpropanoid pathway
    • Ro, D.-K. & Douglas, C. J. Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast (Saccharomyces cerevisiae): implications for control of metabolic flux into the phenylpropanoid pathway. Journal of Biological Chemistry 279, 2600-2607 (2004)
    • (2004) Journal of Biological Chemistry , vol.279 , pp. 2600-2607
    • Ro, D.-K.1    Douglas, C.J.2
  • 34
    • 0344416996 scopus 로고    scopus 로고
    • Regulation of endoplasmic reticulum biogenesis in response to cytochrome P450 overproduction
    • Sandig, G. et al. Regulation of endoplasmic reticulum biogenesis in response to cytochrome P450 overproduction. Drug Metab Rev 31, 393-410 (1999)
    • (1999) Drug Metab Rev , vol.31 , pp. 393-410
    • Sandig, G.1
  • 35
    • 84930615040 scopus 로고    scopus 로고
    • Engineering strategies for the fermentative production of plant alkaloids in yeast
    • Trenchard, I. J. & Smolke, C. D. Engineering strategies for the fermentative production of plant alkaloids in yeast. Metab Eng 30, 96-104 (2015)
    • (2015) Metab Eng , vol.30 , pp. 96-104
    • Trenchard, I.J.1    Smolke, C.D.2
  • 36
    • 84959560542 scopus 로고    scopus 로고
    • Metabolic trade-offs in yeast are caused by F1F0-ATP synthase
    • Nilsson, A. & Nielsen, J. Metabolic trade-offs in yeast are caused by F1F0-ATP synthase. Sci Rep 6, 22264 (2016)
    • (2016) Sci Rep , vol.6 , pp. 22264
    • Nilsson, A.1    Nielsen, J.2
  • 37
    • 84942200183 scopus 로고    scopus 로고
    • Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain
    • Vos, T., de la Torre Cortes, P., van Gulik, W. M., Pronk, J. T. & Daran-Lapujade, P. Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain. Microb Cell Fact 14, 133 (2015)
    • (2015) Microb Cell Fact , vol.14 , pp. 133
    • Vos, T.1    De La Torre Cortes, P.2    Van Gulik, W.M.3    Pronk, J.T.4    Daran-Lapujade, P.5
  • 38
    • 42349106782 scopus 로고    scopus 로고
    • The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism
    • Hazelwood, L. A., Daran, J. M., van Maris, A. J., Pronk, J. T. & Dickinson, J. R. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74, 2259-2266 (2008)
    • (2008) Appl Environ Microbiol , vol.74 , pp. 2259-2266
    • Hazelwood, L.A.1    Daran, J.M.2    Van Maris, A.J.3    Pronk, J.T.4    Dickinson, J.R.5
  • 39
    • 84986254065 scopus 로고    scopus 로고
    • Establishment of a yeast platform strain for production of pcoumaric acid through metabolic engineering of aromatic amino acid biosynthesis
    • Rodriguez, A., Kildegaard, K. R., Li, M., Borodina, I. & Nielsen, J. Establishment of a yeast platform strain for production of pcoumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metabolic engineering 31, 181-188 (2015)
    • (2015) Metabolic Engineering , vol.31 , pp. 181-188
    • Rodriguez, A.1    Kildegaard, K.R.2    Li, M.3    Borodina, I.4    Nielsen, J.5
  • 40
    • 0042029541 scopus 로고    scopus 로고
    • Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae
    • Vuralhan, Z., Morais, M. A., Tai, S. L., Piper, M. D. & Pronk, J. T. Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl Environ Microbiol 69, 4534-4541 (2003)
    • (2003) Appl Environ Microbiol , vol.69 , pp. 4534-4541
    • Vuralhan, Z.1    Morais, M.A.2    Tai, S.L.3    Piper, M.D.4    Pronk, J.T.5
  • 41
    • 84908409797 scopus 로고    scopus 로고
    • Engineering acetyl coenzyme A supply: Functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae
    • Kozak, B. U. et al. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae. MBio 5, e01696-01614 (2014)
    • (2014) MBio , vol.5 , pp. e01696-e01614
    • Kozak, B.U.1
  • 42
    • 84961778420 scopus 로고    scopus 로고
    • Flux control at the malonyl-CoA node through hierarchical dynamic pathway regulation in Saccharomyces cerevisiae
    • David, F., Nielsen, J. & Siewers, V. Flux control at the malonyl-CoA node through hierarchical dynamic pathway regulation in Saccharomyces cerevisiae. ACS synthetic biology (2016)
    • (2016) ACS Synthetic Biology
    • David, F.1    Nielsen, J.2    Siewers, V.3
  • 43
    • 34247580875 scopus 로고    scopus 로고
    • 25 Yeast genetic strain and plasmid collections
    • Entian, K.-D. & Kötter, P. 25 Yeast genetic strain and plasmid collections. Method Microbiol 36, 629-666 (2007)
    • (2007) Method Microbiol , vol.36 , pp. 629-666
    • Entian, K.-D.1    Kötter, P.2
  • 44
    • 84896122676 scopus 로고    scopus 로고
    • EasyClone: Method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae
    • Jensen, N. B. et al. EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae. FEMS Yeast Res 14, 238-248 (2014)
    • (2014) FEMS Yeast Res , vol.14 , pp. 238-248
    • Jensen, N.B.1
  • 45
    • 84979746885 scopus 로고    scopus 로고
    • EasyClone-MarkerFree: A vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9
    • Jessop-Fabre, M. M. et al. EasyClone-MarkerFree: A vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9. Biotechnol J 11, 1110-1117 (2016).
    • (2016) Biotechnol J , vol.11 , pp. 1110-1117
    • Jessop-Fabre, M.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.