-
1
-
-
79958704133
-
An introduction to propensity score methods for reducing the effects of confounding in observational studies
-
Austin, P. C. (2011). An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behavioral Research 46, 399–424.
-
(2011)
Multivariate Behavioral Research
, vol.46
, pp. 399-424
-
-
Austin, P.C.1
-
2
-
-
84859169877
-
The cancer cell line encyclopedia enablespredictive modelling of anticancer drug sensitivity
-
Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., et al. (2012). The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607.
-
(2012)
Nature
, vol.483
, pp. 603-607
-
-
Barretina, J.1
Caponigro, G.2
Stransky, N.3
Venkatesan, K.4
Margolin, A.A.5
Kim, S.6
-
3
-
-
54249099241
-
Consistency of random forests and other averagingclassifiers
-
Biau, G., Devroye, L., and Lugosi, G. (2008). Consistency of random forests and other averaging classifiers. The Journal of Machine Learning Research 9, 2015–2033.
-
(2008)
The Journal of Machine Learning Research
, vol.9
, pp. 2015-2033
-
-
Biau, G.1
Devroye, L.2
Lugosi, G.3
-
4
-
-
0035478854
-
Random forests
-
Breiman, L. (2001). Random forests. Machine learning 45, 5–32.
-
(2001)
Machine learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
5
-
-
0003802343
-
Classification and Regression Trees
-
Monterey
-
Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and Regression Trees. California: Wadsworth and Brooks, Monterey.
-
(1984)
California Wadsworth and Brooks
-
-
Breiman, L.1
Friedman, J.2
Stone, C.J.3
Olshen, R.A.4
-
6
-
-
66149155038
-
Role of biologic therapy and chemotherapy in hormone receptor-and her2-positive breast cancer
-
Buzdar, A. (2009). Role of biologic therapy and chemotherapy in hormone receptor-and her2-positive breast cancer. Annals of Oncology 20, 993–999.
-
(2009)
Annals of Oncology
, vol.20
, pp. 993-999
-
-
Buzdar, A.1
-
7
-
-
80053563163
-
Subgroup identification from randomized clinical trial data
-
Foster, J. C., Taylor, J. M., and Ruberg, S. J. (2011). Subgroup identification from randomized clinical trial data. Statistics in Medicine 30, 2867–2880.
-
(2011)
Statistics in Medicine
, vol.30
, pp. 2867-2880
-
-
Foster, J.C.1
Taylor, J.M.2
Ruberg, S.J.3
-
8
-
-
84919968650
-
On optimal treatment regimes selection for mean survival time
-
Geng, Y., Zhang, H. H., and Lu, W. (2015). On optimal treatment regimes selection for mean survival time. Statistics in Medicine 34, 1169–1184.
-
(2015)
Statistics in Medicine
, vol.34
, pp. 1169-1184
-
-
Geng, Y.1
Zhang, H.H.2
Lu, W.3
-
10
-
-
78650042610
-
Regret-regression for optimal dynamic treatment regimes
-
Henderson, R., Ansell, P., and Alshibani, D. (2010). Regret-regression for optimal dynamic treatment regimes. Biometrics 66, 1192–1201.
-
(2010)
Biometrics
, vol.66
, pp. 1192-1201
-
-
Henderson, R.1
Ansell, P.2
Alshibani, D.3
-
11
-
-
33748771184
-
Regularized estimation in the accelerated failure time model with high-dimensional covariates
-
Huang, J., Ma, S., and Xie, H. (2006). Regularized estimation in the accelerated failure time model with high-dimensional covariates. Biometrics 62, 813–820.
-
(2006)
Biometrics
, vol.62
, pp. 813-820
-
-
Huang, J.1
Ma, S.2
Xie, H.3
-
13
-
-
84925839465
-
The effect of splitting on random forests
-
Ishwaran, H. (2015). The effect of splitting on random forests. Machine Learning 99, 75–118.
-
(2015)
Machine Learning
, vol.99
, pp. 75-118
-
-
Ishwaran, H.1
-
14
-
-
57449111248
-
Random survival forests
-
Ishwaran, H., Kogalur, U. B., Blackstone, E. H., and Lauer, M. S. (2008). Random survival forests. The Annals of Applied Statistics 2, 841–860.
-
(2008)
The Annals of Applied Statistics
, vol.2
, pp. 841-860
-
-
Ishwaran, H.1
Kogalur, U.B.2
Blackstone, E.H.3
Lauer, M.S.4
-
15
-
-
84927694214
-
Combining biomarkers to optimize patient treatment recommendations
-
Kang, C., Janes, H., and Huang, Y. (2014). Combining biomarkers to optimize patient treatment recommendations. Biometrics 70, 695–707.
-
(2014)
Biometrics
, vol.70
, pp. 695-707
-
-
Kang, C.1
Janes, H.2
Huang, Y.3
-
16
-
-
84941648353
-
Tree-based methods for individualizedtreatment rules
-
Laber, E. B. and Zhao, Y. (2015). Tree-based methods for individualized treatment rules. Biometrika 102, 501–514.
-
(2015)
Biometrika
, vol.102
, pp. 501-514
-
-
Laber, E.B.1
Zhao, Y.2
-
17
-
-
74749097452
-
Improving propensity score weighting using machine learning
-
Lee, B. K., Lessler, J., and Stuart, E. A. (2010). Improving propensity score weighting using machine learning. Statistics in Medicine 29, 337–346.
-
(2010)
Statistics in Medicine
, vol.29
, pp. 337-346
-
-
Lee, B.K.1
Lessler, J.2
Stuart, E.A.3
-
18
-
-
80051894060
-
Subgroup identification basedon differential effect search—Recursive partitioning method forestablishing response to treatment in patient subpopulations
-
Lipkovich, I., Dmitrienko, A., Denne, J., and Enas, G. (2011). Subgroup identification based on differential effect search—Recursive partitioning method for establishing response to treatment in patient subpopulations. Statistics in Medicine 30, 2601–2621.
-
(2011)
Statistics in Medicine
, vol.30
, pp. 2601-2621
-
-
Lipkovich, I.1
Dmitrienko, A.2
Denne, J.3
Enas, G.4
-
19
-
-
34247145491
-
Definition of clinically distinct molecular subtypes inestrogen receptor–positive breast carcinomas through genomicgrade
-
Loi, S., Haibe-Kains, B., Desmedt, C., Lallemand, F., Tutt, A. M., Gillet, C., et al. (2007). Definition of clinically distinct molecular subtypes in estrogen receptor–positive breast carcinomas through genomic grade. Journal of Clinical Oncology 25, 1239–1246.
-
(2007)
Journal of Clinical Oncology
, vol.25
, pp. 1239-1246
-
-
Loi, S.1
Haibe-Kains, B.2
Desmedt, C.3
Lallemand, F.4
Tutt, A.M.5
Gillet, C.6
-
20
-
-
84886467569
-
Variable selection for optimal treatment decision
-
Lu, W., Zhang, H. H., and Zeng, D. (2013). Variable selection for optimal treatment decision. Statistical Methods in Medical Research 22, 493–504.
-
(2013)
Statistical Methods in Medical Research
, vol.22
, pp. 493-504
-
-
Lu, W.1
Zhang, H.H.2
Zeng, D.3
-
21
-
-
0034605531
-
Drugdependence, a chronic medical illness: Implications for treatment,insurance, and outcomes evaluation
-
P
-
McLellan, A. T., Lewis, D. C., O'Brien, C. P., and Kleber, H. D. (2000). Drug dependence, a chronic medical illness: Implications for treatment, insurance, and outcomes evaluation. JAMA 284, 1689–1695.
-
(2000)
JAMA
, vol.284
, pp. 1689-1695
-
-
McLellan, A.T.1
Lewis, D.C.2
O'Brien, C.3
Kleber, H.D.4
-
24
-
-
84895870079
-
Dynamic regime marginal structural mean models forestimation of optimal dynamic treatment regimes, part i: Maincontent
-
article 8
-
Orellana, L., Rotnitzky, A., and Robins, J. M. (2010). Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part i: Main content. The International Journal of Biostatistics 6, article 8.
-
(2010)
The International Journal of Biostatistics
, vol.6
-
-
Orellana, L.1
Rotnitzky, A.2
Robins, J.M.3
-
25
-
-
84870707096
-
Performance guarantees for individualized treatment rules
-
Qian, M. and Murphy, S. A. (2011). Performance guarantees for individualized treatment rules. Annals of Statistics 39, 1180–1210.
-
(2011)
Annals of Statistics
, vol.39
, pp. 1180-1210
-
-
Qian, M.1
Murphy, S.A.2
-
26
-
-
33845913126
-
Optimal structural nested models for optimal sequentialdecisions
-
In, New York Springer
-
Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In Proceedings of the Second Seattle Symposium in Biostatistics, 189–326. New York: Springer.
-
(2004)
Proceedings of the Second Seattle Symposiumin Biostatistics
, pp. 189-326
-
-
Robins, J.M.1
-
29
-
-
38249001712
-
Consistent estimation under random censorship when covariables are present
-
Stute, W. (1993). Consistent estimation under random censorship when covariables are present. Journal of Multivariate Analysis 45, 89–103.
-
(1993)
Journal of Multivariate Analysis
, vol.45
, pp. 89-103
-
-
Stute, W.1
-
30
-
-
61749086397
-
Subgroup analysis via recursive partitioning
-
Su, X., Tsai, C.-L., Wang, H., Nickerson, D. M., and Li, B. (2009). Subgroup analysis via recursive partitioning. The Journal of Machine Learning Research 10, 141–158.
-
(2009)
The Journal of Machine Learning Research
, vol.10
, pp. 141-158
-
-
Su, X.1
Tsai, C.-L.2
Wang, H.3
Nickerson, D.M.4
Li, B.5
-
31
-
-
38849159045
-
Interaction trees with censored survival data
-
Su, X., Zhou, T., Yan, X., Fan, J., and Yang, S. (2008). Interaction trees with censored survival data. The International Journal of Biostatistics 4, 1–26.
-
(2008)
The International Journal of Biostatistics
, vol.4
, pp. 1-26
-
-
Su, X.1
Zhou, T.2
Yan, X.3
Fan, J.4
Yang, S.5
-
32
-
-
84919797419
-
A simple method for estimating interactions between a treatment and a large number of covariates
-
Tian, L., Alizadeh, A. A., Gentles, A. J., and Tibshirani, R. (2014). A simple method for estimating interactions between a treatment and a large number of covariates. Journal of the American Statistical Association 109, 1517–1532.
-
(2014)
Journal of the American Statistical Association
, vol.109
, pp. 1517-1532
-
-
Tian, L.1
Alizadeh, A.A.2
Gentles, A.J.3
Tibshirani, R.4
-
34
-
-
84941736393
-
Doubly-robust dynamictreatment regimen estimation via weighted least squares
-
Wallace, M. P. and Moodie, E. E. (2015). Doubly-robust dynamic treatment regimen estimation via weighted least squares. Biometrics 71, 636–644.
-
(2015)
Biometrics
, vol.71
, pp. 636-644
-
-
Wallace, M.P.1
Moodie, E.E.2
-
35
-
-
84906088229
-
Estimating optimal treatment regimes from a classification perspective
-
Zhang, B., Tsiatis, A. A., Davidian, M., Zhang, M., and Laber, E. (2012). Estimating optimal treatment regimes from a classification perspective. Stat 1, 103–114.
-
(2012)
Stat
, vol.1
, pp. 103-114
-
-
Zhang, B.1
Tsiatis, A.A.2
Davidian, M.3
Zhang, M.4
Laber, E.5
-
36
-
-
84871667403
-
A robust method for estimating optimal treatment regimes
-
Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2012). A robust method for estimating optimal treatment regimes. Biometrics 68, 1010–1018.
-
(2012)
Biometrics
, vol.68
, pp. 1010-1018
-
-
Zhang, B.1
Tsiatis, A.A.2
Laber, E.B.3
Davidian, M.4
-
37
-
-
84882733659
-
Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions
-
Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2013). Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions. Biometrika 100, 681–694.
-
(2013)
Biometrika
, vol.100
, pp. 681-694
-
-
Zhang, B.1
Tsiatis, A.A.2
Laber, E.B.3
Davidian, M.4
-
38
-
-
84955415596
-
Using decision lists toconstruct interpretable and parsimonious treatment regimes
-
Zhang, Y., Laber, E. B., Tsiatis, A. A., and Davidian, M. (2015). Using decision lists to construct interpretable and parsimonious treatment regimes. Biometrics 71, 895–904.
-
(2015)
Biometrics
, vol.71
, pp. 895-904
-
-
Zhang, Y.1
Laber, E.B.2
Tsiatis, A.A.3
Davidian, M.4
-
39
-
-
84870657864
-
Estimating individualizedtreatment rules using outcome weighted learning
-
Zhao, Y., Zeng, D., Rush, A. J., and Kosorok, M. R. (2012). Estimating individualized treatment rules using outcome weighted learning. Journal of the American Statistical Association 107, 1106–1118.
-
(2012)
Journalof the American Statistical Association
, vol.107
, pp. 1106-1118
-
-
Zhao, Y.1
Zeng, D.2
Rush, A.J.3
Kosorok, M.R.4
-
40
-
-
85019042536
-
Residual weighted learning for estimating individualizedtreatment rules
-
Zhou, X., Mayer-Hamblett, N., Khan, U., and Kosorok, M. R. (2015). Residual weighted learning for estimating individualized treatment rules. Journal of the American Statistical Associationdoi:10.1080/01621459.2015.1093947.
-
(2015)
Journal of the American StatisticalAssociation
-
-
Zhou, X.1
Mayer-Hamblett, N.2
Khan, U.3
Kosorok, M.R.4
-
42
-
-
84954421092
-
Reinforcement learning trees
-
Zhu, R., Zeng, D., and Kosorok, M. R. (2015). Reinforcement learning trees. Journal of the American Statistical Association 110, 1770–1784.
-
(2015)
Journal of theAmerican Statistical Association
, vol.110
, pp. 1770-1784
-
-
Zhu, R.1
Zeng, D.2
Kosorok, M.R.3
|