메뉴 건너뛰기




Volumn 73, Issue 2, 2017, Pages 391-400

Greedy outcome weighted tree learning of optimal personalized treatment rules

Author keywords

High dimensional data; Optimal treatment rules; Personalized medicine; Reinforcement learning trees; Survival analysis; Tree based method

Indexed keywords

BINARY TREES; CELL CULTURE; CLUSTERING ALGORITHMS; DISEASES; TREES (MATHEMATICS);

EID: 84994875692     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/biom.12593     Document Type: Article
Times cited : (55)

References (42)
  • 1
    • 79958704133 scopus 로고    scopus 로고
    • An introduction to propensity score methods for reducing the effects of confounding in observational studies
    • Austin, P. C. (2011). An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behavioral Research 46, 399–424.
    • (2011) Multivariate Behavioral Research , vol.46 , pp. 399-424
    • Austin, P.C.1
  • 2
    • 84859169877 scopus 로고    scopus 로고
    • The cancer cell line encyclopedia enablespredictive modelling of anticancer drug sensitivity
    • Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., et al. (2012). The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607.
    • (2012) Nature , vol.483 , pp. 603-607
    • Barretina, J.1    Caponigro, G.2    Stransky, N.3    Venkatesan, K.4    Margolin, A.A.5    Kim, S.6
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random forests. Machine learning 45, 5–32.
    • (2001) Machine learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 6
    • 66149155038 scopus 로고    scopus 로고
    • Role of biologic therapy and chemotherapy in hormone receptor-and her2-positive breast cancer
    • Buzdar, A. (2009). Role of biologic therapy and chemotherapy in hormone receptor-and her2-positive breast cancer. Annals of Oncology 20, 993–999.
    • (2009) Annals of Oncology , vol.20 , pp. 993-999
    • Buzdar, A.1
  • 7
    • 80053563163 scopus 로고    scopus 로고
    • Subgroup identification from randomized clinical trial data
    • Foster, J. C., Taylor, J. M., and Ruberg, S. J. (2011). Subgroup identification from randomized clinical trial data. Statistics in Medicine 30, 2867–2880.
    • (2011) Statistics in Medicine , vol.30 , pp. 2867-2880
    • Foster, J.C.1    Taylor, J.M.2    Ruberg, S.J.3
  • 8
    • 84919968650 scopus 로고    scopus 로고
    • On optimal treatment regimes selection for mean survival time
    • Geng, Y., Zhang, H. H., and Lu, W. (2015). On optimal treatment regimes selection for mean survival time. Statistics in Medicine 34, 1169–1184.
    • (2015) Statistics in Medicine , vol.34 , pp. 1169-1184
    • Geng, Y.1    Zhang, H.H.2    Lu, W.3
  • 10
    • 78650042610 scopus 로고    scopus 로고
    • Regret-regression for optimal dynamic treatment regimes
    • Henderson, R., Ansell, P., and Alshibani, D. (2010). Regret-regression for optimal dynamic treatment regimes. Biometrics 66, 1192–1201.
    • (2010) Biometrics , vol.66 , pp. 1192-1201
    • Henderson, R.1    Ansell, P.2    Alshibani, D.3
  • 11
    • 33748771184 scopus 로고    scopus 로고
    • Regularized estimation in the accelerated failure time model with high-dimensional covariates
    • Huang, J., Ma, S., and Xie, H. (2006). Regularized estimation in the accelerated failure time model with high-dimensional covariates. Biometrics 62, 813–820.
    • (2006) Biometrics , vol.62 , pp. 813-820
    • Huang, J.1    Ma, S.2    Xie, H.3
  • 13
    • 84925839465 scopus 로고    scopus 로고
    • The effect of splitting on random forests
    • Ishwaran, H. (2015). The effect of splitting on random forests. Machine Learning 99, 75–118.
    • (2015) Machine Learning , vol.99 , pp. 75-118
    • Ishwaran, H.1
  • 15
    • 84927694214 scopus 로고    scopus 로고
    • Combining biomarkers to optimize patient treatment recommendations
    • Kang, C., Janes, H., and Huang, Y. (2014). Combining biomarkers to optimize patient treatment recommendations. Biometrics 70, 695–707.
    • (2014) Biometrics , vol.70 , pp. 695-707
    • Kang, C.1    Janes, H.2    Huang, Y.3
  • 16
    • 84941648353 scopus 로고    scopus 로고
    • Tree-based methods for individualizedtreatment rules
    • Laber, E. B. and Zhao, Y. (2015). Tree-based methods for individualized treatment rules. Biometrika 102, 501–514.
    • (2015) Biometrika , vol.102 , pp. 501-514
    • Laber, E.B.1    Zhao, Y.2
  • 17
    • 74749097452 scopus 로고    scopus 로고
    • Improving propensity score weighting using machine learning
    • Lee, B. K., Lessler, J., and Stuart, E. A. (2010). Improving propensity score weighting using machine learning. Statistics in Medicine 29, 337–346.
    • (2010) Statistics in Medicine , vol.29 , pp. 337-346
    • Lee, B.K.1    Lessler, J.2    Stuart, E.A.3
  • 18
    • 80051894060 scopus 로고    scopus 로고
    • Subgroup identification basedon differential effect search—Recursive partitioning method forestablishing response to treatment in patient subpopulations
    • Lipkovich, I., Dmitrienko, A., Denne, J., and Enas, G. (2011). Subgroup identification based on differential effect search—Recursive partitioning method for establishing response to treatment in patient subpopulations. Statistics in Medicine 30, 2601–2621.
    • (2011) Statistics in Medicine , vol.30 , pp. 2601-2621
    • Lipkovich, I.1    Dmitrienko, A.2    Denne, J.3    Enas, G.4
  • 19
    • 34247145491 scopus 로고    scopus 로고
    • Definition of clinically distinct molecular subtypes inestrogen receptor–positive breast carcinomas through genomicgrade
    • Loi, S., Haibe-Kains, B., Desmedt, C., Lallemand, F., Tutt, A. M., Gillet, C., et al. (2007). Definition of clinically distinct molecular subtypes in estrogen receptor–positive breast carcinomas through genomic grade. Journal of Clinical Oncology 25, 1239–1246.
    • (2007) Journal of Clinical Oncology , vol.25 , pp. 1239-1246
    • Loi, S.1    Haibe-Kains, B.2    Desmedt, C.3    Lallemand, F.4    Tutt, A.M.5    Gillet, C.6
  • 21
    • 0034605531 scopus 로고    scopus 로고
    • Drugdependence, a chronic medical illness: Implications for treatment,insurance, and outcomes evaluation
    • P
    • McLellan, A. T., Lewis, D. C., O'Brien, C. P., and Kleber, H. D. (2000). Drug dependence, a chronic medical illness: Implications for treatment, insurance, and outcomes evaluation. JAMA 284, 1689–1695.
    • (2000) JAMA , vol.284 , pp. 1689-1695
    • McLellan, A.T.1    Lewis, D.C.2    O'Brien, C.3    Kleber, H.D.4
  • 24
    • 84895870079 scopus 로고    scopus 로고
    • Dynamic regime marginal structural mean models forestimation of optimal dynamic treatment regimes, part i: Maincontent
    • article 8
    • Orellana, L., Rotnitzky, A., and Robins, J. M. (2010). Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part i: Main content. The International Journal of Biostatistics 6, article 8.
    • (2010) The International Journal of Biostatistics , vol.6
    • Orellana, L.1    Rotnitzky, A.2    Robins, J.M.3
  • 25
    • 84870707096 scopus 로고    scopus 로고
    • Performance guarantees for individualized treatment rules
    • Qian, M. and Murphy, S. A. (2011). Performance guarantees for individualized treatment rules. Annals of Statistics 39, 1180–1210.
    • (2011) Annals of Statistics , vol.39 , pp. 1180-1210
    • Qian, M.1    Murphy, S.A.2
  • 26
    • 33845913126 scopus 로고    scopus 로고
    • Optimal structural nested models for optimal sequentialdecisions
    • In, New York Springer
    • Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In Proceedings of the Second Seattle Symposium in Biostatistics, 189–326. New York: Springer.
    • (2004) Proceedings of the Second Seattle Symposiumin Biostatistics , pp. 189-326
    • Robins, J.M.1
  • 29
    • 38249001712 scopus 로고
    • Consistent estimation under random censorship when covariables are present
    • Stute, W. (1993). Consistent estimation under random censorship when covariables are present. Journal of Multivariate Analysis 45, 89–103.
    • (1993) Journal of Multivariate Analysis , vol.45 , pp. 89-103
    • Stute, W.1
  • 34
    • 84941736393 scopus 로고    scopus 로고
    • Doubly-robust dynamictreatment regimen estimation via weighted least squares
    • Wallace, M. P. and Moodie, E. E. (2015). Doubly-robust dynamic treatment regimen estimation via weighted least squares. Biometrics 71, 636–644.
    • (2015) Biometrics , vol.71 , pp. 636-644
    • Wallace, M.P.1    Moodie, E.E.2
  • 35
    • 84906088229 scopus 로고    scopus 로고
    • Estimating optimal treatment regimes from a classification perspective
    • Zhang, B., Tsiatis, A. A., Davidian, M., Zhang, M., and Laber, E. (2012). Estimating optimal treatment regimes from a classification perspective. Stat 1, 103–114.
    • (2012) Stat , vol.1 , pp. 103-114
    • Zhang, B.1    Tsiatis, A.A.2    Davidian, M.3    Zhang, M.4    Laber, E.5
  • 36
    • 84871667403 scopus 로고    scopus 로고
    • A robust method for estimating optimal treatment regimes
    • Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2012). A robust method for estimating optimal treatment regimes. Biometrics 68, 1010–1018.
    • (2012) Biometrics , vol.68 , pp. 1010-1018
    • Zhang, B.1    Tsiatis, A.A.2    Laber, E.B.3    Davidian, M.4
  • 37
    • 84882733659 scopus 로고    scopus 로고
    • Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions
    • Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2013). Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions. Biometrika 100, 681–694.
    • (2013) Biometrika , vol.100 , pp. 681-694
    • Zhang, B.1    Tsiatis, A.A.2    Laber, E.B.3    Davidian, M.4
  • 38
    • 84955415596 scopus 로고    scopus 로고
    • Using decision lists toconstruct interpretable and parsimonious treatment regimes
    • Zhang, Y., Laber, E. B., Tsiatis, A. A., and Davidian, M. (2015). Using decision lists to construct interpretable and parsimonious treatment regimes. Biometrics 71, 895–904.
    • (2015) Biometrics , vol.71 , pp. 895-904
    • Zhang, Y.1    Laber, E.B.2    Tsiatis, A.A.3    Davidian, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.