메뉴 건너뛰기




Volumn 109, Issue 508, 2014, Pages 1517-1532

A Simple Method for Estimating Interactions Between a Treatment and a Large Number of Covariates

Author keywords

Efficiency augmentation; Modified covariates; Personalized medicine; Randomized clinical trial; Subgroup analysis

Indexed keywords


EID: 84919797419     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.2014.951443     Document Type: Article
Times cited : (353)

References (34)
  • 1
    • 20044377408 scopus 로고    scopus 로고
    • Patterns of Treatment Effects in Subsets of Patients in Clinical Trials
    • Bonetti, M., Gelber, R. (2004), Patterns of Treatment Effects in Subsets of Patients in Clinical Trials, Biostatistics, 5, 465–481.
    • (2004) Biostatistics , vol.5 , pp. 465-481
    • Bonetti, M.1    Gelber, R.2
  • 5
    • 1542784498 scopus 로고    scopus 로고
    • Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
    • Fan, J., Li, R. (2001), Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties, Journal of American Statistical Association, 96, 1348–1361.
    • (2001) Journal of American Statistical Association , vol.96 , pp. 1348-1361
    • Fan, J.1    Li, R.2
  • 6
    • 0002432565 scopus 로고
    • Multivariate Adaptive Regression Splines
    • with discussion
    • Friedman, J. (1991), Multivariate Adaptive Regression Splines (with discussion), The Annals of Statistics, 19, 1–141.
    • (1991) The Annals of Statistics , vol.19 , pp. 1-141
    • Friedman, J.1
  • 7
    • 2242445421 scopus 로고    scopus 로고
    • Bayesian Regression Modeling With Interactions and Smooth Effects
    • Gustafson, P. (2000), Bayesian Regression Modeling With Interactions and Smooth Effects, Journal of the American Statistical Association, 95, 795–806.
    • (2000) Journal of the American Statistical Association , vol.95 , pp. 795-806
    • Gustafson, P.1
  • 8
    • 33846664817 scopus 로고    scopus 로고
    • Discussion of “Support Vector Machines With Applications” by Javier Moguerza and Alberto Munoz
    • Hastie, T., Zhu, J. (2006), Discussion of “Support Vector Machines With Applications” by Javier Moguerza and Alberto Munoz, Statistical Science, 21, 352–357.
    • (2006) Statistical Science , vol.21 , pp. 352-357
    • Hastie, T.1    Zhu, J.2
  • 9
    • 51049096710 scopus 로고    scopus 로고
    • Adaptive Lasso for Sparse High-Dimensional Regression Models
    • Huang, J., Ma, S., Zhang, C. (2008), Adaptive Lasso for Sparse High-Dimensional Regression Models, Statistica Sinica, 18, 1603–1608.
    • (2008) Statistica Sinica , vol.18 , pp. 1603-1608
    • Huang, J.1    Ma, S.2    Zhang, C.3
  • 10
    • 84879382883 scopus 로고    scopus 로고
    • Oracle Inequalities for the Lasso in the Cox Model
    • Huang, J., Sun, T., Ying, Z., Zhang, C. (2013), Oracle Inequalities for the Lasso in the Cox Model, The Annals of Statistics, 41, 1055–1692.
    • (2013) The Annals of Statistics , vol.41 , pp. 1055-1692
    • Huang, J.1    Sun, T.2    Ying, Z.3    Zhang, C.4
  • 12
    • 85006607706 scopus 로고    scopus 로고
    • Non-Asymptotic Oracle Inequalities for the High-Dimensional Cox Regression via Lasso
    • Kong, S., Nan, B. (2013), Non-Asymptotic Oracle Inequalities for the High-Dimensional Cox Regression via Lasso, The Annals of Statistics, 41, 1142–1165.
    • (2013) The Annals of Statistics , vol.41 , pp. 1142-1165
    • Kong, S.1    Nan, B.2
  • 16
    • 84871600478 scopus 로고    scopus 로고
    • A Unified Framework for High Dimensional Analysis of M-Estimators With Decomposable Regularizers
    • 1214/12–STS400
    • Negahban, S., Ravikumar, P., Wainwright, M., Yu, B. (2012), A Unified Framework for High Dimensional Analysis of M-Estimators With Decomposable Regularizers, Statistical Science, 27, 1214/12–STS400.
    • (2012) Statistical Science , vol.27
    • Negahban, S.1    Ravikumar, P.2    Wainwright, M.3    Yu, B.4
  • 17
    • 84870707096 scopus 로고    scopus 로고
    • Performance Guarantees for Individualized Treatment Rules
    • Qian, M., Murphy, S. (2011), Performance Guarantees for Individualized Treatment Rules, The Annals of Statistics, 39, 1180–1210.
    • (2011) The Annals of Statistics , vol.39 , pp. 1180-1210
    • Qian, M.1    Murphy, S.2
  • 18
    • 77951622706 scopus 로고
    • The Central Role of the Propensity Score in Observational Studies for Causal Effects
    • Rosenbaum, P., Rubin, D. (1983), The Central Role of the Propensity Score in Observational Studies for Causal Effects, Biometrika, 70, 41–55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.1    Rubin, D.2
  • 19
    • 41149159651 scopus 로고    scopus 로고
    • Interactions Between Treatment and Continuous Covariates: A Step Toward Individualizing Therapy
    • Royston, P., Sauerbrei, W. (2008), Interactions Between Treatment and Continuous Covariates: A Step Toward Individualizing Therapy, Journal of Clinical Oncology, 26, 1397–1399.
    • (2008) Journal of Clinical Oncology , vol.26 , pp. 1397-1399
    • Royston, P.1    Sauerbrei, W.2
  • 20
    • 34047175841 scopus 로고    scopus 로고
    • Detecting an Interaction Between Treatment and a Continuous Covariate: A Comparison of Two Approaches
    • Sauerbrei, W., Royston, P., Zapien, K. (2007), Detecting an Interaction Between Treatment and a Continuous Covariate: A Comparison of Two Approaches, Computational Statistics and Data Analysis, 51, 4054–4063.
    • (2007) Computational Statistics and Data Analysis , vol.51 , pp. 4054-4063
    • Sauerbrei, W.1    Royston, P.2    Zapien, K.3
  • 21
    • 33746196582 scopus 로고    scopus 로고
    • Renal Function and Effectiveness of Angiotensin-Converting Enzyme Inhibitor Therapy in Patients With Chronic Stable Coronary Disease in the Prevention of Events With Ace Inhibition (PEACE) Trial
    • Solomon, S., Rice, M., Jablonski, K., Jose, J., Domanski, M., Sabatine, M., Gersh, B., Rouleau, J., Pfeffer, M., Braunwald, E., (2006), Renal Function and Effectiveness of Angiotensin-Converting Enzyme Inhibitor Therapy in Patients With Chronic Stable Coronary Disease in the Prevention of Events With Ace Inhibition (PEACE) Trial, Circulation, 114, 26–31.
    • (2006) Circulation , vol.114 , pp. 26-31
    • Solomon, S.1    Rice, M.2    Jablonski, K.3    Jose, J.4    Domanski, M.5    Sabatine, M.6    Gersh, B.7    Rouleau, J.8    Pfeffer, M.9    Braunwald, E.10
  • 23
    • 78650650451 scopus 로고    scopus 로고
    • Adaptive Index Models for Marker-Based Risk Stratification
    • Tian, L., Tibshirani, R. (2011), Adaptive Index Models for Marker-Based Risk Stratification, Biostatistics, 12, 68–86.
    • (2011) Biostatistics , vol.12 , pp. 68-86
    • Tian, L.1    Tibshirani, R.2
  • 24
    • 85194972808 scopus 로고    scopus 로고
    • Regression Shrinkage and Selection via the Lasso
    • Tibshirani, R. (1996), Regression Shrinkage and Selection via the Lasso, Journal of the Royal Statistical Society, 58, 267–288.
    • (1996) Journal of the Royal Statistical Society , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 27
    • 51049121146 scopus 로고    scopus 로고
    • High-Dimensional Generalized Linear Models and Lasso
    • Van De Geer, S. (2008), High-Dimensional Generalized Linear Models and Lasso, The Annals of Statistics, 36, 614–645.
    • (2008) The Annals of Statistics , vol.36 , pp. 614-645
    • Van De Geer, S.1
  • 28
    • 77955054299 scopus 로고    scopus 로고
    • On the Conditions Used to Prove Oracle Results for Lasso
    • Van De Geer, S., Buhlmann, P. (2009), On the Conditions Used to Prove Oracle Results for Lasso, Electronic Journal of Statistics, 3, 1360–1392.
    • (2009) Electronic Journal of Statistics , vol.3 , pp. 1360-1392
    • Van De Geer, S.1    Buhlmann, P.2
  • 29
    • 77649284492 scopus 로고    scopus 로고
    • Nearly Unbiased Variable Selection Under Minimax Concave Penalty
    • Zhang, C. (2010), Nearly Unbiased Variable Selection Under Minimax Concave Penalty, The Annals of Statistics, 38, 894–942.
    • (2010) The Annals of Statistics , vol.38 , pp. 894-942
    • Zhang, C.1
  • 30
    • 50949096321 scopus 로고    scopus 로고
    • The Sparsity and Bias of the Lasso Selection in High-Dimensional Linear Regression
    • Zhang, C., Huang, J. (2008), The Sparsity and Bias of the Lasso Selection in High-Dimensional Linear Regression, The Annals of Statistics, 36, 1567–1594.
    • (2008) The Annals of Statistics , vol.36 , pp. 1567-1594
    • Zhang, C.1    Huang, J.2
  • 31
    • 84871532743 scopus 로고    scopus 로고
    • A General Theory of Concave Regularization for High-Dimensional Sparse Estimation Problems
    • Zhang, C., Zhang, T. (2012), A General Theory of Concave Regularization for High-Dimensional Sparse Estimation Problems, Statistical Science, 27, 576–593.
    • (2012) Statistical Science , vol.27 , pp. 576-593
    • Zhang, C.1    Zhang, T.2
  • 32
    • 33845263263 scopus 로고    scopus 로고
    • On Model Selection Consistency of Lasso
    • Zhao, P., Yu, B. (2006), On Model Selection Consistency of Lasso, Journal of Machine Learning Research, 7, 2541–2563.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 34


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.