메뉴 건너뛰기




Volumn 107, Issue 497, 2012, Pages 331-340

Recursively imputed survival trees

Author keywords

Censored data; Ensemble; Imputation; Random forests; Survival analysis; Trees

Indexed keywords


EID: 84862899420     PISSN: 01621459     EISSN: None     Source Type: Journal    
DOI: 10.1080/01621459.2011.637468     Document Type: Article
Times cited : (69)

References (35)
  • 1
    • 54249099241 scopus 로고    scopus 로고
    • Consistency of Random Forests and Other Averaging Classifiers
    • [331,340]
    • Biau, G., Devroye, L., and Lugosi, G. (2008), "Consistency of Random Forests and Other Averaging Classifiers," Journal of Machine Learning Research, 9, 2015-2033. [331,340]
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2015-2033
    • Biau, G.1    Devroye, L.2    Lugosi, G.3
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • [331,339]
    • Breiman, L. (1996), "Bagging Predictors," Machine Learning, 24, 123-140. [331,339]
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 3
    • 0013228784 scopus 로고    scopus 로고
    • Technical Report 577, Berkeley: Department of Statistics, University of California, [340]
    • Breiman, L. (2000), "Some Infinity Theory for Predictor Ensembles," Technical Report 577, Berkeley: Department of Statistics, University of California. [340]
    • (2000) Some Infinity Theory for Predictor Ensembles
    • Breiman, L.1
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • [331,333,334,338,339]
    • Breiman, L. (2001), "Random Forests," Machine Learning, 45, 5-32. [331,333,334,338,339]
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 6
    • 0023905660 scopus 로고
    • RECPAM a Computer Program for Recursive Partition and Amalgamation for Censored Survival Data and Other Situations Frequently Occurring in Biostatistics. I. Methods and Program Features
    • [331]
    • Ciampi, A., Hogg, S., McKinney, S., and Thiffault, J. (1987), "RECPAM a Computer Program for Recursive Partition and Amalgamation for Censored Survival Data and Other Situations Frequently Occurring in Biostatistics. I. Methods and Program Features," Computer Methods and Programs in Biomedicine, 26, 239-256. [331]
    • (1987) Computer Methods and Programs In Biomedicine , vol.26 , pp. 239-256
    • Ciampi, A.1    Hogg, S.2    McKinney, S.3    Thiffault, J.4
  • 7
    • 33646403804 scopus 로고    scopus 로고
    • PERT Perfect Random Tree Ensembles
    • [331]
    • Cutler, A., and Zhao, G. (2001), "PERT Perfect Random Tree Ensembles," Computing Science and Statistics, 33, 490-497. [331]
    • (2001) Computing Science and Statistics , vol.33 , pp. 490-497
    • Cutler, A.1    Zhao, G.2
  • 8
    • 0034250160 scopus 로고    scopus 로고
    • An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting and Randomization
    • [331,339]
    • Dietterich, T. (2000a), "An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting and Randomization," Machine Learning, 40, 139-157. [331,339]
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.1
  • 11
    • 77950537175 scopus 로고    scopus 로고
    • Regularization Paths for Generalized Linear Models via Coordinate Descent
    • [332,334]
    • Friedman, J., Hastie, T., and Tibshirani, R. (2010), "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, 33 (1), 1-22. [332,334]
    • (2010) Journal of Statistical Software , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 12
    • 33646430006 scopus 로고    scopus 로고
    • Extremely Randomized Trees
    • [331,334,339]
    • Geurts, P., Ernst, D., andWehenkel, L. (2006), "Extremely Randomized Trees," Machine Learning, 63 (1), 3-42. [331,334,339]
    • (2006) Machine Learning , vol.63 , Issue.1 , pp. 3-42
    • Geurts, P.1    Ernst, D.2    Andwehenkel, L.3
  • 13
    • 0001743179 scopus 로고
    • Almost Surely Consistent Nonparametric Regression From Recursive Partitioning Schemes
    • [331]
    • Gordon, L., and Olshen, R. (1984), "Almost Surely Consistent Nonparametric Regression From Recursive Partitioning Schemes," Journal of Multivariate Analysis, 15, 147-163. [331]
    • (1984) Journal of Multivariate Analysis , vol.15 , pp. 147-163
    • Gordon, L.1    Olshen, R.2
  • 14
    • 0033619170 scopus 로고    scopus 로고
    • Assessment and Comparison of Prognostic Classification Schemes for Survival Data
    • [332,335]
    • Graf, E., Schmoor, C., Sauerbrei, W., and Schumacher, M. (1999), "Assessment and Comparison of Prognostic Classification Schemes for Survival Data," Statistics in Medicine, 18, 2529-2545. [332,335]
    • (1999) Statistics In Medicine , vol.18 , pp. 2529-2545
    • Graf, E.1    Schmoor, C.2    Sauerbrei, W.3    Schumacher, M.4
  • 19
    • 85020057289 scopus 로고    scopus 로고
    • Variable Importance in Binary Regression Trees and Forest
    • [338]
    • Ishwaran, H. (2007), "Variable Importance in Binary Regression Trees and Forest," Electronic Journal of Statistics, 1, 519-537. [338]
    • (2007) Electronic Journal of Statistics , vol.1 , pp. 519-537
    • Ishwaran, H.1
  • 23
    • 0442293793 scopus 로고    scopus 로고
    • The Versatility of Function-Indexed Weighted Log-Rank Statistics
    • [339]
    • Kosorok, M. R., and Lin, C.-Y. (1999), "The Versatility of Function-Indexed Weighted Log-Rank Statistics," Journal of the American Statistical Association, 94, 320-332. [339]
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 320-332
    • Kosorok, M.R.1    Lin, C.-Y.2
  • 24
    • 0026770594 scopus 로고
    • Relative Risk Trees forCensored Survival Data
    • [331]
    • LeBlanc, M., and Crowley, J. (1992), "Relative Risk Trees forCensored Survival Data," Biometrics, 48, 411-425. [331]
    • (1992) Biometrics , vol.48 , pp. 411-425
    • Leblanc, M.1    Crowley, J.2
  • 28
    • 0033474286 scopus 로고    scopus 로고
    • Building Multivariable Prognostic and Diagnostic Models: Transformation of the Predictors by Using Fractional Polynomials
    • Series A, [337]
    • Sauerbrei, W., and Royston, P. (1999), "Building Multivariable Prognostic and Diagnostic Models: Transformation of the Predictors by Using Fractional Polynomials," Journal of the Royal Statistical Society, Series A, 162, 71-94. [337]
    • (1999) Journal of the Royal Statistical Society , vol.162 , pp. 71-94
    • Sauerbrei, W.1    Royston, P.2
  • 29
  • 30
    • 0023942063 scopus 로고
    • Regression Trees for Censored Data
    • [331]
    • Segal, M. (1988), "Regression Trees for Censored Data," Biometrics, 44, 35-48. [331]
    • (1988) Biometrics , vol.44 , pp. 35-48
    • Segal, M.1
  • 31
    • 31844445012 scopus 로고    scopus 로고
    • Optimizing Processes Based on Censored Data Obtained in Repetitious Experiments Using Grey Prediction
    • [332]
    • Tong, L.-I., Wang, C.-H., and Hsiao, L.-C. (2006), "Optimizing Processes Based on Censored Data Obtained in Repetitious Experiments Using Grey Prediction," International Journal of Advance in Manufacturing Technology, 27, 990-998. [332]
    • (2006) International Journal of Advance In Manufacturing Technology , vol.27 , pp. 990-998
    • Tong, L.-I.1    Wang, C.-H.2    Hsiao, L.-C.3
  • 33
    • 84950432017 scopus 로고
    • A Monte Carlo Implementation of the EM Algorithm and the Poor Man¡-as Data Augmentation Algorithms
    • [332,339]
    • Wei, G. C. G., and Tanner, M. A. (1990), "A Monte Carlo Implementation of the EM Algorithm and the Poor Man¡ās Data Augmentation Algorithms," Journal of the American Statistical Association, 85, 699-704. [332,339]
    • (1990) Journal of the American Statistical Association , vol.85 , pp. 699-704
    • Wei, G.C.G.1    Tanner, M.A.2
  • 34
    • 70449449564 scopus 로고    scopus 로고
    • Reinforcement Learning Design for Cancer Clinical Trials
    • [340]
    • Zhao, Y., Kosorok, M. R., and Zeng, D. (2009), "Reinforcement Learning Design for Cancer Clinical Trials," Statistics in Medicine, 28, 3294-3315. [340]
    • (2009) Statistics In Medicine , vol.28 , pp. 3294-3315
    • Zhao, Y.1    Kosorok, M.R.2    Zeng, D.3
  • 35
    • 83655181241 scopus 로고    scopus 로고
    • Reinforcement Learning Strategies for Clinical Trials in Non-Small Cell Lung Cancer
    • [340]
    • Zhao, Y., Zeng, D., Socinski, M. A., and Kosorok, M. R. (2011), "Reinforcement Learning Strategies for Clinical Trials in Non-Small Cell Lung Cancer," Biometrics, 67, 1422-1433. [340]
    • (2011) Biometrics , vol.67 , pp. 1422-1433
    • Zhao, Y.1    Zeng, D.2    Socinski, M.A.3    Kosorok, M.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.