메뉴 건너뛰기




Volumn 110, Issue 512, 2015, Pages 1770-1784

Reinforcement Learning Trees

Author keywords

Consistency; Error bound; Random forests; Reinforcement learning; Trees

Indexed keywords


EID: 84954421092     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.2015.1036994     Document Type: Article
Times cited : (150)

References (28)
  • 1
    • 0001492549 scopus 로고    scopus 로고
    • Shape Quantization and Recognition With Randomized Trees
    • Y.Amit,, and D.Geman, (1997), “Shape Quantization and Recognition With Randomized Trees,” Neural Computing, 9, 1545–1588.
    • (1997) Neural Computing , vol.9 , pp. 1545-1588
    • Amit, Y.1    Geman, D.2
  • 2
    • 84860701629 scopus 로고    scopus 로고
    • Analysis of a Random Forests Model
    • G.Biau, (2012), “Analysis of a Random Forests Model,” Journal of Machine Learning Research, 13, 1063–1095.
    • (2012) Journal of Machine Learning Research , vol.13 , pp. 1063-1095
    • Biau, G.1
  • 3
    • 54249099241 scopus 로고    scopus 로고
    • Consistency of Random Forests and Other Averaging Classifiers
    • G.Biau,, L.Devroye,, and G.Lugosi, (2008), “Consistency of Random Forests and Other Averaging Classifiers,” Journal of Machine Learning Research, 9, 2015–2033.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2015-2033
    • Biau, G.1    Devroye, L.2    Lugosi, G.3
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • L.Breiman, (1996), “Bagging Predictors,” Machine Learning, 24, 123–140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0013228784 scopus 로고    scopus 로고
    • Technical Report 577, Department of Statistics, University of California, Berkeley
    • L.Breiman, (2000), “Some Infinity Theory for Predictor Ensembles,” Technical Report 577, Department of Statistics, University of California, Berkeley.
    • (2000) Some Infinity Theory for Predictor Ensembles
    • Breiman, L.1
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • L.Breiman, (2001), “Random Forests,” Machine Learning, 45, 5–32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 11
    • 30644464444 scopus 로고    scopus 로고
    • Gene Selection and Classification of Microarray Data Using Random Forest
    • R.Díaz-Uriarte,, and S.A.De Andres, (2006), “Gene Selection and Classification of Microarray Data Using Random Forest,” BMC Bioinformatics, 7, 3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Díaz-Uriarte, R.1    De Andres, S.A.2
  • 12
    • 0034250160 scopus 로고    scopus 로고
    • An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting and Randomization
    • T.Dietterich, (2000), “An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting and Randomization,” Machine Learning, 40, 139–157.
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.1
  • 13
    • 0035470889 scopus 로고    scopus 로고
    • Friedman, J. H. (2001), “Greedy Function Approximation: A Gradient Boosting Machine,” Annals of Statistics, 29, 1189--1232.
  • 14
    • 77950537175 scopus 로고    scopus 로고
    • Friedman, J. H., Hastie, T., and Tibshirani, R. (2010), “Regularization Paths for Generalized Linear Models via Coordinate Descent,” Journal of Statistical Software, 33, 1--22.
  • 19
    • 25444453244 scopus 로고    scopus 로고
    • Screening Large-Scale Association Study Data: Exploiting Interactions Using Random Forests
    • K.L.Lunetta,, L.B.Hayward,, J.Segal,, and P.Van Eerdewegh, (2004), “Screening Large-Scale Association Study Data: Exploiting Interactions Using Random Forests,” BMC Genetics, 5, 32.
    • (2004) BMC Genetics , vol.5 , pp. 32
    • Lunetta, K.L.1    Hayward, L.B.2    Segal, J.3    Van Eerdewegh, P.4
  • 22
    • 48549094895 scopus 로고    scopus 로고
    • A Comprehensive Comparison of Random Forests and Support Vector Machines for Microarray-Based Cancer Classification
    • A.Statnikov,, L.Wang,, and C.F.Aliferis, (2008), “A Comprehensive Comparison of Random Forests and Support Vector Machines for Microarray-Based Cancer Classification,” BMC Bioinformatics, 9, 319.
    • (2008) BMC Bioinformatics , vol.9 , pp. 319
    • Statnikov, A.1    Wang, L.2    Aliferis, C.F.3
  • 23
    • 33847096395 scopus 로고    scopus 로고
    • Bias in Random Forest Variable Importance Measures: Illustrations, Sources and a Solution
    • C.Strobl,, A.-L.Boulesteix,, A.Zeileis,, and T.Hothorn, (2007), “Bias in Random Forest Variable Importance Measures: Illustrations, Sources and a Solution,” BMC Bioinformatics, 8, 25.
    • (2007) BMC Bioinformatics , vol.8 , pp. 25
    • Strobl, C.1    Boulesteix, A.-L.2    Zeileis, A.3    Hothorn, T.4
  • 27
    • 33845263263 scopus 로고    scopus 로고
    • On Model Selection Consistency of Lasso
    • P.Zhao,, and B.Yu, (2006), “On Model Selection Consistency of Lasso,” Journal of Machine Learning Research, 7, 2541–2563.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.