-
1
-
-
0001492549
-
Shape Quantization and Recognition With Randomized Trees
-
Y.Amit,, and D.Geman, (1997), “Shape Quantization and Recognition With Randomized Trees,” Neural Computing, 9, 1545–1588.
-
(1997)
Neural Computing
, vol.9
, pp. 1545-1588
-
-
Amit, Y.1
Geman, D.2
-
2
-
-
84860701629
-
Analysis of a Random Forests Model
-
G.Biau, (2012), “Analysis of a Random Forests Model,” Journal of Machine Learning Research, 13, 1063–1095.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 1063-1095
-
-
Biau, G.1
-
3
-
-
54249099241
-
Consistency of Random Forests and Other Averaging Classifiers
-
G.Biau,, L.Devroye,, and G.Lugosi, (2008), “Consistency of Random Forests and Other Averaging Classifiers,” Journal of Machine Learning Research, 9, 2015–2033.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2015-2033
-
-
Biau, G.1
Devroye, L.2
Lugosi, G.3
-
4
-
-
0030211964
-
Bagging Predictors
-
L.Breiman, (1996), “Bagging Predictors,” Machine Learning, 24, 123–140.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
0013228784
-
-
Technical Report 577, Department of Statistics, University of California, Berkeley
-
L.Breiman, (2000), “Some Infinity Theory for Predictor Ensembles,” Technical Report 577, Department of Statistics, University of California, Berkeley.
-
(2000)
Some Infinity Theory for Predictor Ensembles
-
-
Breiman, L.1
-
6
-
-
0035478854
-
Random Forests
-
L.Breiman, (2001), “Random Forests,” Machine Learning, 45, 5–32.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
7
-
-
0003802343
-
-
Pacific Grove, CA: Wadsworth International
-
L.Breiman,, J.Friedman,, R.Olshen,, and C.Stone, (1984), Classification and Regression Trees, Pacific Grove, CA: Wadsworth International.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
8
-
-
12744259874
-
Identifying SNPs Predictive of Phenotype Using Random Forests
-
A.Bureau,, J.Dupuis,, K.Falls,, K.L.Lunetta,, B.Hayward,, T.P.Keith,, and P.Van Eerdewegh, (2005), “Identifying SNPs Predictive of Phenotype Using Random Forests,” Genetic Epidemiology, 28, 171–182.
-
(2005)
Genetic Epidemiology
, vol.28
, pp. 171-182
-
-
Bureau, A.1
Dupuis, J.2
Falls, K.3
Lunetta, K.L.4
Hayward, B.5
Keith, T.P.6
Van Eerdewegh, P.7
-
9
-
-
84870288271
-
BART: Bayesian Additive Regression Trees
-
H.A.Chipman,, E.I.George,, and R.E.McCulloch, (2010), “BART: Bayesian Additive Regression Trees,” Annals of Applied Statistics, 4, 266–298.
-
(2010)
Annals of Applied Statistics
, vol.4
, pp. 266-298
-
-
Chipman, H.A.1
George, E.I.2
McCulloch, R.E.3
-
10
-
-
33646403804
-
PERT-Perfect Random Tree Ensembles
-
A.Cutler,, and G.Zhao, (2001), “PERT-Perfect Random Tree Ensembles,” Computing Science and Statistics, 33, 490–497.
-
(2001)
Computing Science and Statistics
, vol.33
, pp. 490-497
-
-
Cutler, A.1
Zhao, G.2
-
11
-
-
30644464444
-
Gene Selection and Classification of Microarray Data Using Random Forest
-
R.Díaz-Uriarte,, and S.A.De Andres, (2006), “Gene Selection and Classification of Microarray Data Using Random Forest,” BMC Bioinformatics, 7, 3.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 3
-
-
Díaz-Uriarte, R.1
De Andres, S.A.2
-
12
-
-
0034250160
-
An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting and Randomization
-
T.Dietterich, (2000), “An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting and Randomization,” Machine Learning, 40, 139–157.
-
(2000)
Machine Learning
, vol.40
, pp. 139-157
-
-
Dietterich, T.1
-
13
-
-
0035470889
-
-
Friedman, J. H. (2001), “Greedy Function Approximation: A Gradient Boosting Machine,” Annals of Statistics, 29, 1189--1232.
-
-
-
-
14
-
-
77950537175
-
-
Friedman, J. H., Hastie, T., and Tibshirani, R. (2010), “Regularization Paths for Generalized Linear Models via Coordinate Descent,” Journal of Statistical Software, 33, 1--22.
-
-
-
-
15
-
-
33646430006
-
Extremely Randomized Trees
-
P.Geurts,, D.Ernst,, and L.Wehenkel, (2006), “Extremely Randomized Trees,” Machine Learning, 63, 3–42.
-
(2006)
Machine Learning
, vol.63
, pp. 3-42
-
-
Geurts, P.1
Ernst, D.2
Wehenkel, L.3
-
16
-
-
57449111248
-
Random Survival Forests
-
H.Ishwaran,, U.B.Kogalur,, E.H.Blackstone,, and M.S.Lauer, (2008), “Random Survival Forests,” The Annals of Applied Statistics, 2, 841–860.
-
(2008)
The Annals of Applied Statistics
, vol.2
, pp. 841-860
-
-
Ishwaran, H.1
Kogalur, U.B.2
Blackstone, E.H.3
Lauer, M.S.4
-
17
-
-
1542573450
-
Classification Trees With Unbiased Multiway Splits
-
H.Kim,, and W.-Y.Loh, (2001), “Classification Trees With Unbiased Multiway Splits,” Journal of the American Statistical Association, 96, 589–604.
-
(2001)
Journal of the American Statistical Association
, vol.96
, pp. 589-604
-
-
Kim, H.1
Loh, W.-Y.2
-
18
-
-
33745653724
-
Random Forests and Adaptive Nearest Neighbors
-
Y.Lin,, and Y.Jeon, (2006), “Random Forests and Adaptive Nearest Neighbors,” Journal of the American Statistical Association, 101, 578–590.
-
(2006)
Journal of the American Statistical Association
, vol.101
, pp. 578-590
-
-
Lin, Y.1
Jeon, Y.2
-
19
-
-
25444453244
-
Screening Large-Scale Association Study Data: Exploiting Interactions Using Random Forests
-
K.L.Lunetta,, L.B.Hayward,, J.Segal,, and P.Van Eerdewegh, (2004), “Screening Large-Scale Association Study Data: Exploiting Interactions Using Random Forests,” BMC Genetics, 5, 32.
-
(2004)
BMC Genetics
, vol.5
, pp. 32
-
-
Lunetta, K.L.1
Hayward, L.B.2
Segal, J.3
Van Eerdewegh, P.4
-
20
-
-
0004194203
-
-
Ph.D. dissertation, Johns Hopkins University, Baltimore, MD
-
K.V.S.Murthy,, and S.L.Salzberg, (1995), “On Growing Better Decision Trees From Data,” Ph.D. dissertation, Johns Hopkins University, Baltimore, MD.
-
(1995)
On Growing Better Decision Trees From Data
-
-
Murthy, K.V.S.1
Salzberg, S.L.2
-
21
-
-
76349110062
-
-
arXiv preprint cs/9408103
-
S.K.Murthy,, S.Kasif,, and S.Salzberg, (1994), “A System for Induction of Oblique Decision Trees,” arXiv preprint cs/9408103.
-
(1994)
A System for Induction of Oblique Decision Trees
-
-
Murthy, S.K.1
Kasif, S.2
Salzberg, S.3
-
22
-
-
48549094895
-
A Comprehensive Comparison of Random Forests and Support Vector Machines for Microarray-Based Cancer Classification
-
A.Statnikov,, L.Wang,, and C.F.Aliferis, (2008), “A Comprehensive Comparison of Random Forests and Support Vector Machines for Microarray-Based Cancer Classification,” BMC Bioinformatics, 9, 319.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 319
-
-
Statnikov, A.1
Wang, L.2
Aliferis, C.F.3
-
23
-
-
33847096395
-
Bias in Random Forest Variable Importance Measures: Illustrations, Sources and a Solution
-
C.Strobl,, A.-L.Boulesteix,, A.Zeileis,, and T.Hothorn, (2007), “Bias in Random Forest Variable Importance Measures: Illustrations, Sources and a Solution,” BMC Bioinformatics, 8, 25.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 25
-
-
Strobl, C.1
Boulesteix, A.-L.2
Zeileis, A.3
Hothorn, T.4
-
25
-
-
85194972808
-
Regression Shrinkage and Selection via the Lasso
-
R.Tibshirani, (1996), “Regression Shrinkage and Selection via the Lasso,” Journal of the Royal Statistical Society, Series B, 58, 267–288.
-
(1996)
Journal of the Royal Statistical Society, Series B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
27
-
-
33845263263
-
On Model Selection Consistency of Lasso
-
P.Zhao,, and B.Yu, (2006), “On Model Selection Consistency of Lasso,” Journal of Machine Learning Research, 7, 2541–2563.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2541-2563
-
-
Zhao, P.1
Yu, B.2
-
28
-
-
84862899420
-
Recursively Imputed Survival Trees
-
R.Zhu,, and M.R.Kosorok, (2012), “Recursively Imputed Survival Trees,” Journal of the American Statistical Association, 107, 331–340.
-
(2012)
Journal of the American Statistical Association
, vol.107
, pp. 331-340
-
-
Zhu, R.1
Kosorok, M.R.2
|