-
1
-
-
84880890106
-
Automatic Feature Selection via Weighted Kernels and Regularization
-
Allen, G. I., (2013), “Automatic Feature Selection via Weighted Kernels and Regularization,” Journal of Computational and Graphical Statistics, 22, 284–299.
-
(2013)
Journal of Computational and Graphical Statistics
, vol.22
, pp. 284-299
-
-
Allen, G.I.1
-
2
-
-
0001445010
-
Solving a Class of Linearly Constrained Indefinite Quadratic Problems by D. C. Algorithms
-
An, L. T. H., and Tao, P. D., (1997), “Solving a Class of Linearly Constrained Indefinite Quadratic Problems by D. C. Algorithms,” Journal of Global Optimization, 11, 253–285.
-
(1997)
Journal of Global Optimization
, vol.11
, pp. 253-285
-
-
An, L.T.H.1
Tao, P.D.2
-
3
-
-
33749254646
-
A DC-Programming Algorithm for Kernel Selection
-
Cohen W.W., Moore A., (eds), New York: ACM
-
Argyriou, A., Hauser, R., Micchelli, C. A., and Pontil, M., (2006), “A DC-Programming Algorithm for Kernel Selection,” in ICML, Vol. 148, ACM International Conference Proceeding Series, eds. W. W., Cohen, and A., Moore, New York:ACM, pp. 41–48.
-
(2006)
ICML, Vol. 148, ACM International Conference Proceeding Series
, pp. 41-48
-
-
Argyriou, A.1
Hauser, R.2
Micchelli, C.A.3
Pontil, M.4
-
4
-
-
84875302738
-
Reporting of Analyses From Randomized Controlled Trials With Multiple Arms: A Systematic Review
-
Baron, G., Perrodeau, E., Boutron, I., and Ravaud, P., (2013), “Reporting of Analyses From Randomized Controlled Trials With Multiple Arms:A Systematic Review,” BMC Medicine, 11, 84.
-
(2013)
BMC Medicine
, vol.11
, pp. 84
-
-
Baron, G.1
Perrodeau, E.2
Boutron, I.3
Ravaud, P.4
-
5
-
-
0038453192
-
Rademacher and Gaussian Complexities: Risk Bounds and Structural Results
-
Bartlett, P. L., and Mendelson, S., (2002), “Rademacher and Gaussian Complexities:Risk Bounds and Structural Results,” Journal of Machine Learning Research, 3, 463–482.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
6
-
-
0035478854
-
Random Forests
-
Breiman, L., (2001), “Random Forests,” Machine Learning, 45, 5–32.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
7
-
-
0000732463
-
A Limited Memory Algorithm for Bound Constrained Optimization
-
Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C., (1995), “A Limited Memory Algorithm for Bound Constrained Optimization,” SIAM Journal on Scientific and Statistical Computing, 16, 1190–1208.
-
(1995)
SIAM Journal on Scientific and Statistical Computing
, vol.16
, pp. 1190-1208
-
-
Byrd, R.H.1
Lu, P.2
Nocedal, J.3
Zhu, C.4
-
9
-
-
34250704272
-
Trading Convexity for Scalability
-
ICML ’06, New York: ACM
-
Collobert, R., Sinz, F., Weston, J., and Bottou, L., (2006), “Trading Convexity for Scalability,” in Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, 201–208. New York:ACM.
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning
, pp. 201-208
-
-
Collobert, R.1
Sinz, F.2
Weston, J.3
Bottou, L.4
-
10
-
-
0004019773
-
-
New York: Springer
-
Devroye, L., Györfi, L., and Lugosi, G., (1996), A Probabilistic Theory of Pattern Recognition, New York:Springer.
-
(1996)
A Probabilistic Theory of Pattern Recognition
-
-
Devroye, L.1
Györfi, L.2
Lugosi, G.3
-
11
-
-
0000406788
-
Solving Multiclass Learning Problems via Error-Correcting Output Codes
-
Dietterich, T. G., and Bakiri, G., (1995), “Solving Multiclass Learning Problems via Error-Correcting Output Codes,” Journal of Artificial Intelligence Research, 2, 263–286.
-
(1995)
Journal of Artificial Intelligence Research
, vol.2
, pp. 263-286
-
-
Dietterich, T.G.1
Bakiri, G.2
-
13
-
-
3543109140
-
A Feature Selection Newton Method for Support Vector Machine Classification
-
Fung, G. M., and Mangasarian, O. L., (2004), “A Feature Selection Newton Method for Support Vector Machine Classification,” Computational Optimization and Applications, 28, 185–202.
-
(2004)
Computational Optimization and Applications
, vol.28
, pp. 185-202
-
-
Fung, G.M.1
Mangasarian, O.L.2
-
14
-
-
85156255820
-
Adaptive Scaling for Feature Selection in SVMs
-
Becker S., Thrun S., Obermayer K., (eds), Cambridge, MA: MIT Press
-
Grandvalet, Y., and Canu, S., (2002), “Adaptive Scaling for Feature Selection in SVMs,” in Advances in Neural Information Processing System, eds. S., Becker, S., Thrun, and K., Obermayer, Cambridge, MA:MIT Press, pp. 553–560.
-
(2002)
Advances in Neural Information Processing System
, pp. 553-560
-
-
Grandvalet, Y.1
Canu, S.2
-
15
-
-
78649719355
-
Variable Selection for Qualitative Interactions
-
Gunter, L., Zhu, J., and Murphy, S., (2011), “Variable Selection for Qualitative Interactions,” Statistical Methodology, 8, 42–55.
-
(2011)
Statistical Methodology
, vol.8
, pp. 42-55
-
-
Gunter, L.1
Zhu, J.2
Murphy, S.3
-
16
-
-
0003684449
-
-
New York: Springer
-
Hastie, T., Tibshirani, R., and Friedman, J. H., (2001), The Elements of Statistical Learning, New York:Springer.
-
(2001)
The Elements of Statistical Learning
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.H.3
-
17
-
-
80054721877
-
Timing of Antiretroviral Therapy for HIV-1 Infection and Tuberculosis
-
Havlir, D. V., Kendall, M. A., Ive, P., Kumwenda, J., Swindells, S., Qasba, S. S., Luetkemeyer, A. F., Hogg, E., Rooney, J. F., Wu, X., Hosseinipour, M. C., Lalloo, U., Veloso, V. G., Some, F. F., Kumarasamy, N., Padayatchi, N., Santos, B. R., Reid, S., Hakim, J., Mohapi, L., Mugyenyi, P., Sanchez, J., Lama, J. R., Pape, J. W., Sanchez, A., Asmelash, A., Moko, E., Sawe, F., Andersen, J., and Sanne, I., (2011), “Timing of Antiretroviral Therapy for HIV-1 Infection and Tuberculosis,” New England Journal of Medicine, 365, 1482–1491.
-
(2011)
New England Journal of Medicine
, vol.365
, pp. 1482-1491
-
-
Havlir, D.V.1
Kendall, M.A.2
Ive, P.3
Kumwenda, J.4
Swindells, S.5
Qasba, S.S.6
Luetkemeyer, A.F.7
Hogg, E.8
Rooney, J.F.9
Wu, X.10
Hosseinipour, M.C.11
Lalloo, U.12
Veloso, V.G.13
Some, F.F.14
Kumarasamy, N.15
Padayatchi, N.16
Santos, B.R.17
Reid, S.18
Hakim, J.19
Mohapi, L.20
Mugyenyi, P.21
Sanchez, J.22
Lama, J.R.23
Pape, J.W.24
Sanchez, A.25
Asmelash, A.26
Moko, E.27
Sawe, F.28
Andersen, J.29
Sanne, I.30
more..
-
18
-
-
4944228528
-
-
Technical Report, Department of Computer Science, National Taiwan University, Taipei 106, Taiwan
-
Hsu, C.-W., Chang, C.-C., and Lin, C.-J., (2003), “A Practical Guide to Support Vector Classification,” Technical Report, Department of Computer Science, National Taiwan University, Taipei 106, Taiwan.
-
(2003)
A Practical Guide to Support Vector Classification
-
-
Hsu, C.-W.1
Chang, C.-C.2
Lin, C.-J.3
-
19
-
-
0015000439
-
Some Results on Tchebycheffian Spline Functions
-
Kimeldorf, G., and Wahba, G., (1971), “Some Results on Tchebycheffian Spline Functions,” Journal of Mathematical Analysis and Applications, 33, 82–95.
-
(1971)
Journal of Mathematical Analysis and Applications
, vol.33
, pp. 82-95
-
-
Kimeldorf, G.1
Wahba, G.2
-
20
-
-
50649123582
-
Rodeo: Sparse, Greedy Nonparametric Regression
-
Lafferty, J., and Wasserman, L., (2008), “Rodeo:Sparse, Greedy Nonparametric Regression,” The Annals of Statistics, 36, 28–63.
-
(2008)
The Annals of Statistics
, vol.36
, pp. 28-63
-
-
Lafferty, J.1
Wasserman, L.2
-
21
-
-
2142775432
-
Multicategory Support Vector Machines, Theory, and Application to the Classification of Microarray Data and Satellite Radiance Data
-
Lee, Y., Lin, Y., and Wahba, G., (2004), “Multicategory Support Vector Machines, Theory, and Application to the Classification of Microarray Data and Satellite Radiance Data,” Journal of the American Statistical Association, 99, 67–81.
-
(2004)
Journal of the American Statistical Association
, vol.99
, pp. 67-81
-
-
Lee, Y.1
Lin, Y.2
Wahba, G.3
-
22
-
-
33847350805
-
Component Selection and Smoothing in Multivariate Nonparametric Regression
-
Lin, Y., and Zhang, H. H., (2006), “Component Selection and Smoothing in Multivariate Nonparametric Regression,” The Annals of Statistics, 34, 2272–2297.
-
(2006)
The Annals of Statistics
, vol.34
, pp. 2272-2297
-
-
Lin, Y.1
Zhang, H.H.2
-
23
-
-
84855220977
-
Remark on ‘Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale Bound Constrained Optimization’
-
Morales, J. L., and Nocedal, J., (2011), “Remark on ‘Algorithm 778:L-BFGS-B:Fortran Subroutines for Large-Scale Bound Constrained Optimization’,” ACM Transactions on Mathematical Software, 38, 7:1–7:4.
-
(2011)
ACM Transactions on Mathematical Software
, vol.38
, pp. 7:1-7:4
-
-
Morales, J.L.1
Nocedal, J.2
-
24
-
-
0038107066
-
Optimal Dynamic Treatment Regimes
-
Murphy, S. A., (2003), “Optimal Dynamic Treatment Regimes,” Journal of the Royal Statistical Society, Series B, 65, 331–355.
-
(2003)
Journal of the Royal Statistical Society, Series B
, vol.65
, pp. 331-355
-
-
Murphy, S.A.1
-
25
-
-
19144362679
-
An Experimental Design for the Development of Adaptive Treatment Strategies
-
Murphy, S. A (2005), “An Experimental Design for the Development of Adaptive Treatment Strategies,” Statistics in Medicine, 24, 1455–1481.
-
(2005)
Statistics in Medicine
, pp. 24
-
-
Murphy, S.A.1
-
26
-
-
84966262179
-
Updating Quasi-Newton Matrices With Limited Storage
-
Nocedal, J., (1980), “Updating Quasi-Newton Matrices With Limited Storage,” Mathematics of Computation, 35, 773–782.
-
(1980)
Mathematics of Computation
, vol.35
, pp. 773-782
-
-
Nocedal, J.1
-
28
-
-
84870707096
-
Performance Guarantees for Individualized Treatment Rules
-
Qian, M., and Murphy, S. A., (2011), “Performance Guarantees for Individualized Treatment Rules,” The Annals of Statistics, 39, 1180–1210.
-
(2011)
The Annals of Statistics
, vol.39
, pp. 1180-1210
-
-
Qian, M.1
Murphy, S.A.2
-
30
-
-
33845913126
-
Optimal Structural Nested Models for Optimal Sequential Decisions
-
Lin D., Heagerty P., (eds), New York: Springer
-
Robins, J. M., (2004), “Optimal Structural Nested Models for Optimal Sequential Decisions,” in Proceedings of the Second Seattle Symposium in Biostatistics, Vol. 179 of Lecture Notes in Statistics, eds. D., Lin, and P., Heagerty, New York:Springer, pp. 189–326.
-
(2004)
Proceedings of the Second Seattle Symposium in Biostatistics, Vol. 179 of Lecture Notes in Statistics
, pp. 189-326
-
-
Robins, J.M.1
-
34
-
-
34247197035
-
Fast Rates for Support Vector Machines Using Gaussian Kernels
-
Steinwart, I., and Scovel, C., (2007), “Fast Rates for Support Vector Machines Using Gaussian Kernels,” The Annals of Statistics, 35, 575–607.
-
(2007)
The Annals of Statistics
, vol.35
, pp. 575-607
-
-
Steinwart, I.1
Scovel, C.2
-
35
-
-
77956890008
-
Martingale-Based Residuals for Survival Models
-
Therneau, T. M., Grambsch, P. M., and Fleming, T. R., (1990), “Martingale-Based Residuals for Survival Models,” Biometrika, 77, 147–160.
-
(1990)
Biometrika
, vol.77
, pp. 147-160
-
-
Therneau, T.M.1
Grambsch, P.M.2
Fleming, T.R.3
-
36
-
-
0001287271
-
Regression Shrinkage and Selection Via the Lasso
-
Tibshirani, R., (1994), “Regression Shrinkage and Selection Via the Lasso,” Journal of the Royal Statistical Society, Series B, 58, 267–288.
-
(1994)
Journal of the Royal Statistical Society, Series B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
37
-
-
80052511405
-
Comparative Efficacy and Safety of 4 Randomized Regimens to Treat Early Pseudomonas Aeruginosa Infection in Children With Cystic Fibrosis
-
Treggiari, M. M., Retsch-Bogart, G., Mayer-Hamblett, N., Khan, U., Kulich, M., Kronmal, R., Williams, J., Hiatt, P., Gibson, R. L., Spencer, T., Orenstein, D., Chatfield, B. A., Froh, D. K., Burns, J. L., Rosenfeld, M., and Ramsey, B. W., (2011), “Comparative Efficacy and Safety of 4 Randomized Regimens to Treat Early Pseudomonas Aeruginosa Infection in Children With Cystic Fibrosis,” Archives of Pediatrics & Adolescent Medicine, 165, 847–856.
-
(2011)
Archives of Pediatrics & Adolescent Medicine
, vol.165
, pp. 847-856
-
-
Treggiari, M.M.1
Retsch-Bogart, G.2
Mayer-Hamblett, N.3
Khan, U.4
Kulich, M.5
Kronmal, R.6
Williams, J.7
Hiatt, P.8
Gibson, R.L.9
Spencer, T.10
Orenstein, D.11
Chatfield, B.A.12
Froh, D.K.13
Burns, J.L.14
Rosenfeld, M.15
Ramsey, B.W.16
-
38
-
-
67349204479
-
Early Anti-Pseudomonal Acquisition in Young Patients With Cystic Fibrosis: Rationale and Design of the EPIC Clinical Trial and Observational Study
-
Treggiari, M. M., Rosenfeld, M., Mayer-Hamblett, N., Retsch-Bogart, G., Gibson, R. L., Williams, J., Emerson, J., Kronmal, R. A., and Ramsey, B. W., (2009), “Early Anti-Pseudomonal Acquisition in Young Patients With Cystic Fibrosis:Rationale and Design of the EPIC Clinical Trial and Observational Study,” Contemporary Clinical Trials, 30, 256–268.
-
(2009)
Contemporary Clinical Trials
, vol.30
, pp. 256-268
-
-
Treggiari, M.M.1
Rosenfeld, M.2
Mayer-Hamblett, N.3
Retsch-Bogart, G.4
Gibson, R.L.5
Williams, J.6
Emerson, J.7
Kronmal, R.A.8
Ramsey, B.W.9
-
40
-
-
38849091390
-
Hybrid Huberized Support Vector Machines for Microarray Classification and Gene Selection
-
Wang, L., Zhu, J., and Zou, H., (2008), “Hybrid Huberized Support Vector Machines for Microarray Classification and Gene Selection,” Bioinformatics, 24, 412–419.
-
(2008)
Bioinformatics
, vol.24
, pp. 412-419
-
-
Wang, L.1
Zhu, J.2
Zou, H.3
-
41
-
-
0001001098
-
Feature Selection for SVMs
-
Cambridge, MA: MIT Press
-
Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., and Vapnik, V., (2000), “Feature Selection for SVMs,” in Advances in Neural Information Processing System, Cambridge, MA:MIT Press, pp. 668–674.
-
(2000)
Advances in Neural Information Processing System
, pp. 668-674
-
-
Weston, J.1
Mukherjee, S.2
Chapelle, O.3
Pontil, M.4
Poggio, T.5
Vapnik, V.6
-
42
-
-
35348869458
-
Robust Truncated-Hinge-Loss Support Vector Machines
-
Wu, Y., and Liu, Y., (2007), “Robust Truncated-Hinge-Loss Support Vector Machines,” Journal of the American Statistical Association, 102, 974–983.
-
(2007)
Journal of the American Statistical Association
, vol.102
, pp. 974-983
-
-
Wu, Y.1
Liu, Y.2
-
43
-
-
0037686659
-
The Concave–Convex Procedure
-
Yuille, A. L., and Rangarajan, A., (2003), “The Concave–Convex Procedure,” Neural Computation, 15, 915–936.
-
(2003)
Neural Computation
, vol.15
, pp. 915-936
-
-
Yuille, A.L.1
Rangarajan, A.2
-
44
-
-
84871667403
-
A Robust Method for Estimating Optimal Treatment Regimes
-
Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M., (2012), “A Robust Method for Estimating Optimal Treatment Regimes,” Biometrics, 68, 1010–1018.
-
(2012)
Biometrics
, vol.68
, pp. 1010-1018
-
-
Zhang, B.1
Tsiatis, A.A.2
Laber, E.B.3
Davidian, M.4
-
45
-
-
70449449564
-
Reinforcement Learning Design for Cancer Clinical Trials
-
Zhao, Y., Kosorok, M. R., and Zeng, D., (2009), “Reinforcement Learning Design for Cancer Clinical Trials,” Statistics in Medicine, 28, 3294–3315.
-
(2009)
Statistics in Medicine
, vol.28
, pp. 3294-3315
-
-
Zhao, Y.1
Kosorok, M.R.2
Zeng, D.3
-
46
-
-
84870657864
-
Estimating Individualized Treatment Rules Using Outcome Weighted Learning
-
Zhao, Y., Zeng, D., Rush, A. J., and Kosorok, M. R., (2012), “Estimating Individualized Treatment Rules Using Outcome Weighted Learning,” Journal of the American Statistical Association, 107, 1106–1118.
-
(2012)
Journal of the American Statistical Association
, vol.107
, pp. 1106-1118
-
-
Zhao, Y.1
Zeng, D.2
Rush, A.J.3
Kosorok, M.R.4
-
47
-
-
83655181241
-
Reinforcement Learning Strategies for Clinical Trials in Nonsmall Cell Lung Cancer
-
Zhao, Y., Zeng, D., Socinski, M. A., and Kosorok, M. R., (2011), “Reinforcement Learning Strategies for Clinical Trials in Nonsmall Cell Lung Cancer,” Biometrics, 67, 1422–1433.
-
(2011)
Biometrics
, vol.67
, pp. 1422-1433
-
-
Zhao, Y.1
Zeng, D.2
Socinski, M.A.3
Kosorok, M.R.4
-
48
-
-
84936797778
-
New Statistical Learning Methods for Estimating Optimal Dynamic Treatment Regimes
-
Zhao, Y.-Q., Zeng, D., Laber, E. B., and Kosorok, M. R., (2015), “New Statistical Learning Methods for Estimating Optimal Dynamic Treatment Regimes,” Journal of the American Statistical Association, 110, 583–598.
-
(2015)
Journal of the American Statistical Association
-
-
Zhao, Y.-Q.1
Zeng, D.2
Laber, E.B.3
Kosorok, M.R.4
-
49
-
-
15944363312
-
Classification of Gene Microarrays by Penalized Logistic Regression
-
Zhu, J., and Hastie, T., (2004), “Classification of Gene Microarrays by Penalized Logistic Regression,” Biostatistics, 5, 427–443.
-
(2004)
Biostatistics
, vol.5
, pp. 427-443
-
-
Zhu, J.1
Hastie, T.2
-
50
-
-
24644515558
-
1-Norm Support Vector Machines
-
Systems, eds. S. Thrun, L. K. Saul, and B. Schölkopf (Vol. 16, pp. 49–56), Cambridge, MA: MIT
-
Zhu, J., Rosset, S., Hastie, T., and Tibshirani, R., (2003), “1-Norm Support Vector Machines,” in Advances in Neural Information Processing Systems, eds. S. Thrun, L. K. Saul, and B. Schölkopf (Vol. 16, pp. 49–56), Cambridge, MA:MIT.
-
(2003)
Advances in Neural Information Processing
-
-
Zhu, J.1
Rosset, S.2
Hastie, T.3
Tibshirani, R.4
-
51
-
-
16244401458
-
Regularization and Variable Selection via the Elastic Net
-
Zou, H., and Hastie, T., (2005), “Regularization and Variable Selection via the Elastic Net,” Journal of the Royal Statistical Society, Series B, 67, 301–320.
-
(2005)
Journal of the Royal Statistical Society, Series B
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
|