메뉴 건너뛰기




Volumn 112, Issue 517, 2017, Pages 169-187

Residual Weighted Learning for Estimating Individualized Treatment Rules

Author keywords

Convergence rate; Martingale residuals; Optimal treatment regime; Residuals; RKHS; Universal consistency

Indexed keywords


EID: 85019042536     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.2015.1093947     Document Type: Article
Times cited : (224)

References (51)
  • 1
    • 84880890106 scopus 로고    scopus 로고
    • Automatic Feature Selection via Weighted Kernels and Regularization
    • Allen, G. I., (2013), “Automatic Feature Selection via Weighted Kernels and Regularization,” Journal of Computational and Graphical Statistics, 22, 284–299.
    • (2013) Journal of Computational and Graphical Statistics , vol.22 , pp. 284-299
    • Allen, G.I.1
  • 2
    • 0001445010 scopus 로고    scopus 로고
    • Solving a Class of Linearly Constrained Indefinite Quadratic Problems by D. C. Algorithms
    • An, L. T. H., and Tao, P. D., (1997), “Solving a Class of Linearly Constrained Indefinite Quadratic Problems by D. C. Algorithms,” Journal of Global Optimization, 11, 253–285.
    • (1997) Journal of Global Optimization , vol.11 , pp. 253-285
    • An, L.T.H.1    Tao, P.D.2
  • 4
    • 84875302738 scopus 로고    scopus 로고
    • Reporting of Analyses From Randomized Controlled Trials With Multiple Arms: A Systematic Review
    • Baron, G., Perrodeau, E., Boutron, I., and Ravaud, P., (2013), “Reporting of Analyses From Randomized Controlled Trials With Multiple Arms:A Systematic Review,” BMC Medicine, 11, 84.
    • (2013) BMC Medicine , vol.11 , pp. 84
    • Baron, G.1    Perrodeau, E.2    Boutron, I.3    Ravaud, P.4
  • 5
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian Complexities: Risk Bounds and Structural Results
    • Bartlett, P. L., and Mendelson, S., (2002), “Rademacher and Gaussian Complexities:Risk Bounds and Structural Results,” Journal of Machine Learning Research, 3, 463–482.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L., (2001), “Random Forests,” Machine Learning, 45, 5–32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 11
    • 0000406788 scopus 로고
    • Solving Multiclass Learning Problems via Error-Correcting Output Codes
    • Dietterich, T. G., and Bakiri, G., (1995), “Solving Multiclass Learning Problems via Error-Correcting Output Codes,” Journal of Artificial Intelligence Research, 2, 263–286.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 13
    • 3543109140 scopus 로고    scopus 로고
    • A Feature Selection Newton Method for Support Vector Machine Classification
    • Fung, G. M., and Mangasarian, O. L., (2004), “A Feature Selection Newton Method for Support Vector Machine Classification,” Computational Optimization and Applications, 28, 185–202.
    • (2004) Computational Optimization and Applications , vol.28 , pp. 185-202
    • Fung, G.M.1    Mangasarian, O.L.2
  • 14
    • 85156255820 scopus 로고    scopus 로고
    • Adaptive Scaling for Feature Selection in SVMs
    • Becker S., Thrun S., Obermayer K., (eds), Cambridge, MA: MIT Press
    • Grandvalet, Y., and Canu, S., (2002), “Adaptive Scaling for Feature Selection in SVMs,” in Advances in Neural Information Processing System, eds. S., Becker, S., Thrun, and K., Obermayer, Cambridge, MA:MIT Press, pp. 553–560.
    • (2002) Advances in Neural Information Processing System , pp. 553-560
    • Grandvalet, Y.1    Canu, S.2
  • 15
    • 78649719355 scopus 로고    scopus 로고
    • Variable Selection for Qualitative Interactions
    • Gunter, L., Zhu, J., and Murphy, S., (2011), “Variable Selection for Qualitative Interactions,” Statistical Methodology, 8, 42–55.
    • (2011) Statistical Methodology , vol.8 , pp. 42-55
    • Gunter, L.1    Zhu, J.2    Murphy, S.3
  • 20
    • 50649123582 scopus 로고    scopus 로고
    • Rodeo: Sparse, Greedy Nonparametric Regression
    • Lafferty, J., and Wasserman, L., (2008), “Rodeo:Sparse, Greedy Nonparametric Regression,” The Annals of Statistics, 36, 28–63.
    • (2008) The Annals of Statistics , vol.36 , pp. 28-63
    • Lafferty, J.1    Wasserman, L.2
  • 21
    • 2142775432 scopus 로고    scopus 로고
    • Multicategory Support Vector Machines, Theory, and Application to the Classification of Microarray Data and Satellite Radiance Data
    • Lee, Y., Lin, Y., and Wahba, G., (2004), “Multicategory Support Vector Machines, Theory, and Application to the Classification of Microarray Data and Satellite Radiance Data,” Journal of the American Statistical Association, 99, 67–81.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 67-81
    • Lee, Y.1    Lin, Y.2    Wahba, G.3
  • 22
    • 33847350805 scopus 로고    scopus 로고
    • Component Selection and Smoothing in Multivariate Nonparametric Regression
    • Lin, Y., and Zhang, H. H., (2006), “Component Selection and Smoothing in Multivariate Nonparametric Regression,” The Annals of Statistics, 34, 2272–2297.
    • (2006) The Annals of Statistics , vol.34 , pp. 2272-2297
    • Lin, Y.1    Zhang, H.H.2
  • 23
    • 84855220977 scopus 로고    scopus 로고
    • Remark on ‘Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale Bound Constrained Optimization’
    • Morales, J. L., and Nocedal, J., (2011), “Remark on ‘Algorithm 778:L-BFGS-B:Fortran Subroutines for Large-Scale Bound Constrained Optimization’,” ACM Transactions on Mathematical Software, 38, 7:1–7:4.
    • (2011) ACM Transactions on Mathematical Software , vol.38 , pp. 7:1-7:4
    • Morales, J.L.1    Nocedal, J.2
  • 25
    • 19144362679 scopus 로고    scopus 로고
    • An Experimental Design for the Development of Adaptive Treatment Strategies
    • Murphy, S. A (2005), “An Experimental Design for the Development of Adaptive Treatment Strategies,” Statistics in Medicine, 24, 1455–1481.
    • (2005) Statistics in Medicine , pp. 24
    • Murphy, S.A.1
  • 26
    • 84966262179 scopus 로고
    • Updating Quasi-Newton Matrices With Limited Storage
    • Nocedal, J., (1980), “Updating Quasi-Newton Matrices With Limited Storage,” Mathematics of Computation, 35, 773–782.
    • (1980) Mathematics of Computation , vol.35 , pp. 773-782
    • Nocedal, J.1
  • 28
    • 84870707096 scopus 로고    scopus 로고
    • Performance Guarantees for Individualized Treatment Rules
    • Qian, M., and Murphy, S. A., (2011), “Performance Guarantees for Individualized Treatment Rules,” The Annals of Statistics, 39, 1180–1210.
    • (2011) The Annals of Statistics , vol.39 , pp. 1180-1210
    • Qian, M.1    Murphy, S.A.2
  • 29
    • 84890447445 scopus 로고    scopus 로고
    • Variable Selection Using svm Based Criteria
    • Rakotomamonjy, A., (2003), “Variable Selection Using svm Based Criteria,” Journal of Machine Learning Research, 3, 1357–1370.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1357-1370
    • Rakotomamonjy, A.1
  • 34
    • 34247197035 scopus 로고    scopus 로고
    • Fast Rates for Support Vector Machines Using Gaussian Kernels
    • Steinwart, I., and Scovel, C., (2007), “Fast Rates for Support Vector Machines Using Gaussian Kernels,” The Annals of Statistics, 35, 575–607.
    • (2007) The Annals of Statistics , vol.35 , pp. 575-607
    • Steinwart, I.1    Scovel, C.2
  • 35
    • 77956890008 scopus 로고
    • Martingale-Based Residuals for Survival Models
    • Therneau, T. M., Grambsch, P. M., and Fleming, T. R., (1990), “Martingale-Based Residuals for Survival Models,” Biometrika, 77, 147–160.
    • (1990) Biometrika , vol.77 , pp. 147-160
    • Therneau, T.M.1    Grambsch, P.M.2    Fleming, T.R.3
  • 40
    • 38849091390 scopus 로고    scopus 로고
    • Hybrid Huberized Support Vector Machines for Microarray Classification and Gene Selection
    • Wang, L., Zhu, J., and Zou, H., (2008), “Hybrid Huberized Support Vector Machines for Microarray Classification and Gene Selection,” Bioinformatics, 24, 412–419.
    • (2008) Bioinformatics , vol.24 , pp. 412-419
    • Wang, L.1    Zhu, J.2    Zou, H.3
  • 42
    • 35348869458 scopus 로고    scopus 로고
    • Robust Truncated-Hinge-Loss Support Vector Machines
    • Wu, Y., and Liu, Y., (2007), “Robust Truncated-Hinge-Loss Support Vector Machines,” Journal of the American Statistical Association, 102, 974–983.
    • (2007) Journal of the American Statistical Association , vol.102 , pp. 974-983
    • Wu, Y.1    Liu, Y.2
  • 43
    • 0037686659 scopus 로고    scopus 로고
    • The Concave–Convex Procedure
    • Yuille, A. L., and Rangarajan, A., (2003), “The Concave–Convex Procedure,” Neural Computation, 15, 915–936.
    • (2003) Neural Computation , vol.15 , pp. 915-936
    • Yuille, A.L.1    Rangarajan, A.2
  • 44
    • 84871667403 scopus 로고    scopus 로고
    • A Robust Method for Estimating Optimal Treatment Regimes
    • Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M., (2012), “A Robust Method for Estimating Optimal Treatment Regimes,” Biometrics, 68, 1010–1018.
    • (2012) Biometrics , vol.68 , pp. 1010-1018
    • Zhang, B.1    Tsiatis, A.A.2    Laber, E.B.3    Davidian, M.4
  • 45
    • 70449449564 scopus 로고    scopus 로고
    • Reinforcement Learning Design for Cancer Clinical Trials
    • Zhao, Y., Kosorok, M. R., and Zeng, D., (2009), “Reinforcement Learning Design for Cancer Clinical Trials,” Statistics in Medicine, 28, 3294–3315.
    • (2009) Statistics in Medicine , vol.28 , pp. 3294-3315
    • Zhao, Y.1    Kosorok, M.R.2    Zeng, D.3
  • 47
    • 83655181241 scopus 로고    scopus 로고
    • Reinforcement Learning Strategies for Clinical Trials in Nonsmall Cell Lung Cancer
    • Zhao, Y., Zeng, D., Socinski, M. A., and Kosorok, M. R., (2011), “Reinforcement Learning Strategies for Clinical Trials in Nonsmall Cell Lung Cancer,” Biometrics, 67, 1422–1433.
    • (2011) Biometrics , vol.67 , pp. 1422-1433
    • Zhao, Y.1    Zeng, D.2    Socinski, M.A.3    Kosorok, M.R.4
  • 49
    • 15944363312 scopus 로고    scopus 로고
    • Classification of Gene Microarrays by Penalized Logistic Regression
    • Zhu, J., and Hastie, T., (2004), “Classification of Gene Microarrays by Penalized Logistic Regression,” Biostatistics, 5, 427–443.
    • (2004) Biostatistics , vol.5 , pp. 427-443
    • Zhu, J.1    Hastie, T.2
  • 50
    • 24644515558 scopus 로고    scopus 로고
    • 1-Norm Support Vector Machines
    • Systems, eds. S. Thrun, L. K. Saul, and B. Schölkopf (Vol. 16, pp. 49–56), Cambridge, MA: MIT
    • Zhu, J., Rosset, S., Hastie, T., and Tibshirani, R., (2003), “1-Norm Support Vector Machines,” in Advances in Neural Information Processing Systems, eds. S. Thrun, L. K. Saul, and B. Schölkopf (Vol. 16, pp. 49–56), Cambridge, MA:MIT.
    • (2003) Advances in Neural Information Processing
    • Zhu, J.1    Rosset, S.2    Hastie, T.3    Tibshirani, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.