-
1
-
-
84901199092
-
Inference for optimal dynamic treatment regimes using an adaptive m-out-of-n bootstrap scheme
-
Chakraborty, B., Laber, E. B., and Zhao, Y. (2013). Inference for optimal dynamic treatment regimes using an adaptive m-out-of-n bootstrap scheme. Biometrics 69, 714-723.
-
(2013)
Biometrics
, vol.69
, pp. 714-723
-
-
Chakraborty, B.1
Laber, E.B.2
Zhao, Y.3
-
3
-
-
77954420461
-
Inference for non-regular parameters in optimal dynamic treatment regimes
-
Chakraborty, B., Murphy, S., and Strecher, V. (2010). Inference for non-regular parameters in optimal dynamic treatment regimes. Statistical Methods in Medical Research 19, 317-343.
-
(2010)
Statistical Methods in Medical Research
, vol.19
, pp. 317-343
-
-
Chakraborty, B.1
Murphy, S.2
Strecher, V.3
-
5
-
-
78650042610
-
Regret-regression for optimal dynamic treatment regimes
-
Henderson, R., Ansell, P., and Alshibani, D. (2010). Regret-regression for optimal dynamic treatment regimes. Biometrics 66, 1192-1201.
-
(2010)
Biometrics
, vol.66
, pp. 1192-1201
-
-
Henderson, R.1
Ansell, P.2
Alshibani, D.3
-
6
-
-
84867329090
-
Analysis of multi-stage treatments for recurrent diseases
-
Huang, X. and Ning, J. (2012). Analysis of multi-stage treatments for recurrent diseases. Statistics in Medicine 31, 2805-2821.
-
(2012)
Statistics in Medicine
, vol.31
, pp. 2805-2821
-
-
Huang, X.1
Ning, J.2
-
7
-
-
84927697361
-
Combining biomarkers to optimize patient treatment recommendations
-
Kang, C. Y., Janes, H., and Huang, Y. (2014). Combining biomarkers to optimize patient treatment recommendations. Biometrics 70, 713-716.
-
(2014)
Biometrics
, vol.70
, pp. 713-716
-
-
Kang, C.Y.1
Janes, H.2
Huang, Y.3
-
8
-
-
0035941454
-
Promotion of breastfeeding intervention trial (PROBIT): A randomized trial in the Republic of Belarus
-
Kramer, M. S., Chalmers, B., Hodnett, E. D., Sevkovskaya, Z., Dzikovich, I., Shapiro, S., et al. (2001). Promotion of breastfeeding intervention trial (PROBIT): A randomized trial in the Republic of Belarus. Journal of the American Medical Association 285, 413-420.
-
(2001)
Journal of the American Medical Association
, vol.285
, pp. 413-420
-
-
Kramer, M.S.1
Chalmers, B.2
Hodnett, E.D.3
Sevkovskaya, Z.4
Dzikovich, I.5
Shapiro, S.6
-
9
-
-
85153172703
-
-
Statistical Inference in Dynamic Treatment RegimesPreprint:.
-
Laber, E. B., Qian, M., Lizotte, D. J., Pelham, W. E., and Murphy, S. A. (2013). Statistical Inference in Dynamic Treatment RegimesPreprint: http://arxiv.org/abs/1006.5831v3.
-
(2013)
-
-
Laber, E.B.1
Qian, M.2
Lizotte, D.J.3
Pelham, W.E.4
Murphy, S.A.5
-
10
-
-
84912121111
-
Q-learning: Flexible learning about useful utilities
-
Moodie, E., Dean, N., and Sun, Y. (2013). Q-learning: Flexible learning about useful utilities. Statistics in Biosciences 6, 223-243.
-
(2013)
Statistics in Biosciences
, vol.6
, pp. 223-243
-
-
Moodie, E.1
Dean, N.2
Sun, Y.3
-
11
-
-
69949172005
-
Estimating response-maximized decision rules with applications to breastfeeding
-
Moodie, E., Platt, R., and Kramer, M. (2009). Estimating response-maximized decision rules with applications to breastfeeding. Journal of the American Statistical Association 104, 155-165.
-
(2009)
Journal of the American Statistical Association
, vol.104
, pp. 155-165
-
-
Moodie, E.1
Platt, R.2
Kramer, M.3
-
12
-
-
71249117969
-
A note on the variance of doubly-robust g-estimates
-
Moodie, E. E. M. (2009). A note on the variance of doubly-robust g-estimates. Biometrika 96, 998-1004.
-
(2009)
Biometrika
, vol.96
, pp. 998-1004
-
-
Moodie, E.E.M.1
-
14
-
-
84901827385
-
Adaptive individualized dosing in pharmacological studies: Generating candidate dynamic dosing strategies for warfarin treatment
-
Rich, B., Moodie, E. E. M., and Stephens, D. A. (2014). Adaptive individualized dosing in pharmacological studies: Generating candidate dynamic dosing strategies for warfarin treatment. Clinical Trials (London, England) 11, 435-444.
-
(2014)
Clinical Trials (London, England)
, vol.11
, pp. 435-444
-
-
Rich, B.1
Moodie, E.E.M.2
Stephens, D.A.3
-
15
-
-
77950530307
-
Model checking with residuals for g-estimation of optimal dynamic treatment regimes
-
Article 12.
-
Rich, B., Moodie, E. E. M., Stephens, D. A., and Platt, R. W. (2010). Model checking with residuals for g-estimation of optimal dynamic treatment regimes. International Journal of Biostatistics 6, Article 12.
-
(2010)
International Journal of Biostatistics
, vol.6
-
-
Rich, B.1
Moodie, E.E.M.2
Stephens, D.A.3
Platt, R.W.4
-
17
-
-
33845913126
-
Proceedings of the Second Seattle Symposium on Biostatistics
-
D. Y. Lin and P. J. Heagerty (eds), New York: Springer.
-
Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In Proceedings of the Second Seattle Symposium on Biostatistics, D. Y. Lin and P. J. Heagerty (eds), 189-326. New York: Springer.
-
(2004)
Optimal structural nested models for optimal sequential decisions
, pp. 189-326
-
-
Robins, J.M.1
-
18
-
-
84950421496
-
Analysis of semi-parametric regression models for repeated outcomes in the presence of missing data
-
Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1995). Analysis of semi-parametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 90, 106-121.
-
(1995)
Journal of the American Statistical Association
, vol.90
, pp. 106-121
-
-
Robins, J.M.1
Rotnitzky, A.2
Zhao, L.P.3
-
19
-
-
84950657856
-
Discussion of randomized analysis of experimental data: The Fisher randomization test by D. Basu
-
Rubin, D. (1980). Discussion of randomized analysis of experimental data: The Fisher randomization test by D. Basu. Journal of the American Statistical Association 75, 591-593.
-
(1980)
Journal of the American Statistical Association
, vol.75
, pp. 591-593
-
-
Rubin, D.1
-
20
-
-
84921477485
-
Q- and A-learning methods for estimating optimal dynamic treatment regimes
-
Schulte, P., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2014). Q- and A-learning methods for estimating optimal dynamic treatment regimes. Statistical Science 29, 640-661.
-
(2014)
Statistical Science
, vol.29
, pp. 640-661
-
-
Schulte, P.1
Tsiatis, A.A.2
Laber, E.B.3
Davidian, M.4
-
22
-
-
84864385401
-
Evaluation of viable dynamic treatment regimes in a sequentially randomized trial of advanced prostate cancer
-
Wang, L., Rotnitzky, A., Lin, X., Millikan, R. E., and Thall, P. F. (2012). Evaluation of viable dynamic treatment regimes in a sequentially randomized trial of advanced prostate cancer. Journal of the American Statistical Association 107, 493-508.
-
(2012)
Journal of the American Statistical Association
, vol.107
, pp. 493-508
-
-
Wang, L.1
Rotnitzky, A.2
Lin, X.3
Millikan, R.E.4
Thall, P.F.5
-
23
-
-
0004049893
-
-
PhD dissertation, Cambridge, England: Cambridge University Press.
-
Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD dissertation, Cambridge, England: Cambridge University Press.
-
(1989)
Learning from Delayed Rewards
-
-
Watkins, C.J.C.1
-
24
-
-
84871667403
-
A robust method for estimating optimal treatment regimes
-
Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2012). A robust method for estimating optimal treatment regimes. Biometrics 68, 1010-1018.
-
(2012)
Biometrics
, vol.68
, pp. 1010-1018
-
-
Zhang, B.1
Tsiatis, A.A.2
Laber, E.B.3
Davidian, M.4
-
25
-
-
84882733659
-
Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions
-
Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2013). Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions. Biometrika 100, 681-694.
-
(2013)
Biometrika
, vol.100
, pp. 681-694
-
-
Zhang, B.1
Tsiatis, A.A.2
Laber, E.B.3
Davidian, M.4
-
26
-
-
70449449564
-
Reinforcement learning design for cancer clinical trials
-
Zhao, Y., Kosorok, M., and Zeng, D. (2009). Reinforcement learning design for cancer clinical trials. Statistics in Medicine 28, 3294-3315.
-
(2009)
Statistics in Medicine
, vol.28
, pp. 3294-3315
-
-
Zhao, Y.1
Kosorok, M.2
Zeng, D.3
-
27
-
-
84906083513
-
Estimation of optimal dynamic treatment regimes
-
Zhao, Y. and Laber, E. B. (2014). Estimation of optimal dynamic treatment regimes. Clinical Trials 11, 400-407.
-
(2014)
Clinical Trials
, vol.11
, pp. 400-407
-
-
Zhao, Y.1
Laber, E.B.2
-
28
-
-
84870657864
-
Estimating individual treatment rules using outcome weighted learning
-
Zhao, Y., Zeng, D., Rush, A., and Kosorok, M. (2012). Estimating individual treatment rules using outcome weighted learning. Journal of the American Statistical Association 107, 1106-1118.
-
(2012)
Journal of the American Statistical Association
, vol.107
, pp. 1106-1118
-
-
Zhao, Y.1
Zeng, D.2
Rush, A.3
Kosorok, M.4
-
29
-
-
83655181241
-
Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer
-
Zhao, Y., Zeng, D., Socinski, M., and Kosorok, M. (2011). Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer. Biometrics 67, 1422-1433.
-
(2011)
Biometrics
, vol.67
, pp. 1422-1433
-
-
Zhao, Y.1
Zeng, D.2
Socinski, M.3
Kosorok, M.4
-
30
-
-
84936797778
-
New statistical learning methods for estimating optimal dynamic treatment regimes
-
Journal of the American Statistical Association
-
Zhao, Y. Q., Zeng, D., Laber, E. B., and Kosorok, M. R. (2014). New statistical learning methods for estimating optimal dynamic treatment regimes. Journal of the American Statistical Association. doi: 10.1080/01621459.2014.937488.
-
(2014)
-
-
Zhao, Y.Q.1
Zeng, D.2
Laber, E.B.3
Kosorok, M.R.4
|