메뉴 건너뛰기




Volumn 71, Issue 3, 2015, Pages 636-644

Erratum to: Doubly-robust dynamic treatment regimen estimation via weighted least squares: Doubly-Robust Dynamic Treatment Regimen Estimation (Biometrics, (2015), 71, 3, (636-644), 10.1111/biom.12306);Doubly-robust dynamic treatment regimen estimation via weighted least squares

Author keywords

Adaptive treatment strategies; Backwards induction; Dynamic treatment regimens; G estimation; Personalized medicine; Q learning

Indexed keywords

ADAPTIVE TREATMENT STRATEGY; BACKWARD INDUCTION; DYNAMIC TREATMENT REGIMEN; DYNAMIC TREATMENTS; G-ESTIMATION; HEALTH RESEARCH; PERSONALIZED MEDICINES; PROPERTY; Q-LEARNING; WEIGHTED LEAST-SQUARES;

EID: 84941736393     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/biom.13283     Document Type: Erratum
Times cited : (96)

References (30)
  • 1
    • 84901199092 scopus 로고    scopus 로고
    • Inference for optimal dynamic treatment regimes using an adaptive m-out-of-n bootstrap scheme
    • Chakraborty, B., Laber, E. B., and Zhao, Y. (2013). Inference for optimal dynamic treatment regimes using an adaptive m-out-of-n bootstrap scheme. Biometrics 69, 714-723.
    • (2013) Biometrics , vol.69 , pp. 714-723
    • Chakraborty, B.1    Laber, E.B.2    Zhao, Y.3
  • 5
    • 78650042610 scopus 로고    scopus 로고
    • Regret-regression for optimal dynamic treatment regimes
    • Henderson, R., Ansell, P., and Alshibani, D. (2010). Regret-regression for optimal dynamic treatment regimes. Biometrics 66, 1192-1201.
    • (2010) Biometrics , vol.66 , pp. 1192-1201
    • Henderson, R.1    Ansell, P.2    Alshibani, D.3
  • 6
    • 84867329090 scopus 로고    scopus 로고
    • Analysis of multi-stage treatments for recurrent diseases
    • Huang, X. and Ning, J. (2012). Analysis of multi-stage treatments for recurrent diseases. Statistics in Medicine 31, 2805-2821.
    • (2012) Statistics in Medicine , vol.31 , pp. 2805-2821
    • Huang, X.1    Ning, J.2
  • 7
    • 84927697361 scopus 로고    scopus 로고
    • Combining biomarkers to optimize patient treatment recommendations
    • Kang, C. Y., Janes, H., and Huang, Y. (2014). Combining biomarkers to optimize patient treatment recommendations. Biometrics 70, 713-716.
    • (2014) Biometrics , vol.70 , pp. 713-716
    • Kang, C.Y.1    Janes, H.2    Huang, Y.3
  • 9
    • 85153172703 scopus 로고    scopus 로고
    • Statistical Inference in Dynamic Treatment RegimesPreprint:.
    • Laber, E. B., Qian, M., Lizotte, D. J., Pelham, W. E., and Murphy, S. A. (2013). Statistical Inference in Dynamic Treatment RegimesPreprint: http://arxiv.org/abs/1006.5831v3.
    • (2013)
    • Laber, E.B.1    Qian, M.2    Lizotte, D.J.3    Pelham, W.E.4    Murphy, S.A.5
  • 10
    • 84912121111 scopus 로고    scopus 로고
    • Q-learning: Flexible learning about useful utilities
    • Moodie, E., Dean, N., and Sun, Y. (2013). Q-learning: Flexible learning about useful utilities. Statistics in Biosciences 6, 223-243.
    • (2013) Statistics in Biosciences , vol.6 , pp. 223-243
    • Moodie, E.1    Dean, N.2    Sun, Y.3
  • 11
    • 69949172005 scopus 로고    scopus 로고
    • Estimating response-maximized decision rules with applications to breastfeeding
    • Moodie, E., Platt, R., and Kramer, M. (2009). Estimating response-maximized decision rules with applications to breastfeeding. Journal of the American Statistical Association 104, 155-165.
    • (2009) Journal of the American Statistical Association , vol.104 , pp. 155-165
    • Moodie, E.1    Platt, R.2    Kramer, M.3
  • 12
    • 71249117969 scopus 로고    scopus 로고
    • A note on the variance of doubly-robust g-estimates
    • Moodie, E. E. M. (2009). A note on the variance of doubly-robust g-estimates. Biometrika 96, 998-1004.
    • (2009) Biometrika , vol.96 , pp. 998-1004
    • Moodie, E.E.M.1
  • 14
    • 84901827385 scopus 로고    scopus 로고
    • Adaptive individualized dosing in pharmacological studies: Generating candidate dynamic dosing strategies for warfarin treatment
    • Rich, B., Moodie, E. E. M., and Stephens, D. A. (2014). Adaptive individualized dosing in pharmacological studies: Generating candidate dynamic dosing strategies for warfarin treatment. Clinical Trials (London, England) 11, 435-444.
    • (2014) Clinical Trials (London, England) , vol.11 , pp. 435-444
    • Rich, B.1    Moodie, E.E.M.2    Stephens, D.A.3
  • 17
    • 33845913126 scopus 로고    scopus 로고
    • Proceedings of the Second Seattle Symposium on Biostatistics
    • D. Y. Lin and P. J. Heagerty (eds), New York: Springer.
    • Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In Proceedings of the Second Seattle Symposium on Biostatistics, D. Y. Lin and P. J. Heagerty (eds), 189-326. New York: Springer.
    • (2004) Optimal structural nested models for optimal sequential decisions , pp. 189-326
    • Robins, J.M.1
  • 18
    • 84950421496 scopus 로고
    • Analysis of semi-parametric regression models for repeated outcomes in the presence of missing data
    • Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1995). Analysis of semi-parametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 90, 106-121.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 106-121
    • Robins, J.M.1    Rotnitzky, A.2    Zhao, L.P.3
  • 19
    • 84950657856 scopus 로고
    • Discussion of randomized analysis of experimental data: The Fisher randomization test by D. Basu
    • Rubin, D. (1980). Discussion of randomized analysis of experimental data: The Fisher randomization test by D. Basu. Journal of the American Statistical Association 75, 591-593.
    • (1980) Journal of the American Statistical Association , vol.75 , pp. 591-593
    • Rubin, D.1
  • 20
    • 84921477485 scopus 로고    scopus 로고
    • Q- and A-learning methods for estimating optimal dynamic treatment regimes
    • Schulte, P., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2014). Q- and A-learning methods for estimating optimal dynamic treatment regimes. Statistical Science 29, 640-661.
    • (2014) Statistical Science , vol.29 , pp. 640-661
    • Schulte, P.1    Tsiatis, A.A.2    Laber, E.B.3    Davidian, M.4
  • 22
    • 84864385401 scopus 로고    scopus 로고
    • Evaluation of viable dynamic treatment regimes in a sequentially randomized trial of advanced prostate cancer
    • Wang, L., Rotnitzky, A., Lin, X., Millikan, R. E., and Thall, P. F. (2012). Evaluation of viable dynamic treatment regimes in a sequentially randomized trial of advanced prostate cancer. Journal of the American Statistical Association 107, 493-508.
    • (2012) Journal of the American Statistical Association , vol.107 , pp. 493-508
    • Wang, L.1    Rotnitzky, A.2    Lin, X.3    Millikan, R.E.4    Thall, P.F.5
  • 23
    • 0004049893 scopus 로고
    • PhD dissertation, Cambridge, England: Cambridge University Press.
    • Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD dissertation, Cambridge, England: Cambridge University Press.
    • (1989) Learning from Delayed Rewards
    • Watkins, C.J.C.1
  • 24
    • 84871667403 scopus 로고    scopus 로고
    • A robust method for estimating optimal treatment regimes
    • Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2012). A robust method for estimating optimal treatment regimes. Biometrics 68, 1010-1018.
    • (2012) Biometrics , vol.68 , pp. 1010-1018
    • Zhang, B.1    Tsiatis, A.A.2    Laber, E.B.3    Davidian, M.4
  • 25
    • 84882733659 scopus 로고    scopus 로고
    • Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions
    • Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2013). Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions. Biometrika 100, 681-694.
    • (2013) Biometrika , vol.100 , pp. 681-694
    • Zhang, B.1    Tsiatis, A.A.2    Laber, E.B.3    Davidian, M.4
  • 26
    • 70449449564 scopus 로고    scopus 로고
    • Reinforcement learning design for cancer clinical trials
    • Zhao, Y., Kosorok, M., and Zeng, D. (2009). Reinforcement learning design for cancer clinical trials. Statistics in Medicine 28, 3294-3315.
    • (2009) Statistics in Medicine , vol.28 , pp. 3294-3315
    • Zhao, Y.1    Kosorok, M.2    Zeng, D.3
  • 27
    • 84906083513 scopus 로고    scopus 로고
    • Estimation of optimal dynamic treatment regimes
    • Zhao, Y. and Laber, E. B. (2014). Estimation of optimal dynamic treatment regimes. Clinical Trials 11, 400-407.
    • (2014) Clinical Trials , vol.11 , pp. 400-407
    • Zhao, Y.1    Laber, E.B.2
  • 29
    • 83655181241 scopus 로고    scopus 로고
    • Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer
    • Zhao, Y., Zeng, D., Socinski, M., and Kosorok, M. (2011). Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer. Biometrics 67, 1422-1433.
    • (2011) Biometrics , vol.67 , pp. 1422-1433
    • Zhao, Y.1    Zeng, D.2    Socinski, M.3    Kosorok, M.4
  • 30
    • 84936797778 scopus 로고    scopus 로고
    • New statistical learning methods for estimating optimal dynamic treatment regimes
    • Journal of the American Statistical Association
    • Zhao, Y. Q., Zeng, D., Laber, E. B., and Kosorok, M. R. (2014). New statistical learning methods for estimating optimal dynamic treatment regimes. Journal of the American Statistical Association. doi: 10.1080/01621459.2014.937488.
    • (2014)
    • Zhao, Y.Q.1    Zeng, D.2    Laber, E.B.3    Kosorok, M.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.