메뉴 건너뛰기




Volumn 37, Issue 10, 2016, Pages 647-658

The Role of the Microbiota in Shaping Infectious Immunity

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE IMMUNITY; ANTIBIOTIC RESISTANCE; BACTERIAL COLONIZATION; BACTERIAL IMMUNITY; BACTERIAL INFECTION; COMMENSALISM; HOST; HUMAN; IMMUNOMODULATION; IMMUNOPATHOLOGY; INNATE IMMUNITY; INTESTINE FLORA; INTESTINE MUCOSA; NEXT GENERATION SEQUENCING; NONHUMAN; PATHOGENICITY; REVIEW; ANIMAL; HOST PATHOGEN INTERACTION; IMMUNOLOGY; INFECTION; INFLAMMATION; METAGENOME; MICROBIOLOGY; MICROFLORA; OPPORTUNISTIC INFECTION;

EID: 84994846019     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2016.08.007     Document Type: Review
Times cited : (70)

References (125)
  • 1
    • 84862276328 scopus 로고    scopus 로고
    • Structure, function and diversity of the healthy human microbiome
    • 1 Human Microbiome Project Consortium, Structure, function and diversity of the healthy human microbiome. Nature 486 (2012), 207–214.
    • (2012) Nature , vol.486 , pp. 207-214
    • Human Microbiome Project Consortium1
  • 2
    • 84876414806 scopus 로고    scopus 로고
    • The gut microbiota–masters of host development and physiology
    • 2 Sommer, F., Bäckhed, F., The gut microbiota–masters of host development and physiology. Nat. Rev. Microbiol. 11 (2013), 227–238.
    • (2013) Nat. Rev. Microbiol. , vol.11 , pp. 227-238
    • Sommer, F.1    Bäckhed, F.2
  • 3
    • 84897138296 scopus 로고    scopus 로고
    • Role of the microbiota in immunity and inflammation
    • 3 Belkaid, Y., Hand, T.W., Role of the microbiota in immunity and inflammation. Cell 157 (2014), 121–141.
    • (2014) Cell , vol.157 , pp. 121-141
    • Belkaid, Y.1    Hand, T.W.2
  • 4
    • 77950251400 scopus 로고    scopus 로고
    • A human gut microbial gene catalogue established by metagenomic sequencing
    • 4 Qin, J., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464 (2010), 59–65.
    • (2010) Nature , vol.464 , pp. 59-65
    • Qin, J.1
  • 5
    • 84884310169 scopus 로고    scopus 로고
    • The genetic theory of infectious diseases: a brief history and selected illustrations
    • 5 Casanova, J.L., Abel, L., The genetic theory of infectious diseases: a brief history and selected illustrations. Annu. Rev. Genomics. Hum. Genet. 14 (2013), 215–243.
    • (2013) Annu. Rev. Genomics. Hum. Genet. , vol.14 , pp. 215-243
    • Casanova, J.L.1    Abel, L.2
  • 6
    • 84925395779 scopus 로고    scopus 로고
    • What is infectiveness and how is it involved in infection and immunity?
    • 6 Pirofski, L.A., Casadevall, A., What is infectiveness and how is it involved in infection and immunity?. BMC Immunol., 16, 2015, 13.
    • (2015) BMC Immunol. , vol.16 , pp. 13
    • Pirofski, L.A.1    Casadevall, A.2
  • 7
    • 79953284685 scopus 로고    scopus 로고
    • Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity
    • 7 Puel, A., et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332 (2011), 65–68.
    • (2011) Science , vol.332 , pp. 65-68
    • Puel, A.1
  • 8
    • 84886795788 scopus 로고    scopus 로고
    • Microbiota-mediated colonization resistance against intestinal pathogens
    • 8 Buffie, C.G., Pamer, E.G., Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13 (2013), 790–801.
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 790-801
    • Buffie, C.G.1    Pamer, E.G.2
  • 9
    • 84878597238 scopus 로고    scopus 로고
    • Effector and memory T cell responses to commensal bacteria
    • 9 Belkaid, Y., et al. Effector and memory T cell responses to commensal bacteria. Trends Immunol. 34 (2013), 299–306.
    • (2013) Trends Immunol. , vol.34 , pp. 299-306
    • Belkaid, Y.1
  • 10
    • 84861980130 scopus 로고    scopus 로고
    • Interactions between the microbiota and the immune system
    • 10 Hooper, L.V., et al. Interactions between the microbiota and the immune system. Science 336 (2012), 1268–1273.
    • (2012) Science , vol.336 , pp. 1268-1273
    • Hooper, L.V.1
  • 11
    • 79551687271 scopus 로고    scopus 로고
    • Mechanisms controlling pathogen colonization of the gut
    • 11 Stecher, B., Hardt, W.D., Mechanisms controlling pathogen colonization of the gut. Curr. Opin. Microbiol. 14 (2011), 82–91.
    • (2011) Curr. Opin. Microbiol. , vol.14 , pp. 82-91
    • Stecher, B.1    Hardt, W.D.2
  • 12
    • 84960193245 scopus 로고    scopus 로고
    • Clostridium difficile infection: epidemiology, diagnosis and understanding transmission
    • 12 Martin, J.S., et al. Clostridium difficile infection: epidemiology, diagnosis and understanding transmission. Nat. Rev. Gastroenterol. Hepatol. 13 (2016), 206–216.
    • (2016) Nat. Rev. Gastroenterol. Hepatol. , vol.13 , pp. 206-216
    • Martin, J.S.1
  • 13
    • 82955233474 scopus 로고    scopus 로고
    • Treating Clostridium difficile infection with fecal microbiota transplantation
    • 13 Bakken, J.S., et al. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin. Gastroenterol. Hepatol. 9 (2011), 1044–1049.
    • (2011) Clin. Gastroenterol. Hepatol. , vol.9 , pp. 1044-1049
    • Bakken, J.S.1
  • 14
    • 84925500413 scopus 로고    scopus 로고
    • Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile
    • 14 Buffie, C.G., et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517 (2015), 205–208.
    • (2015) Nature , vol.517 , pp. 205-208
    • Buffie, C.G.1
  • 15
    • 84861972274 scopus 로고    scopus 로고
    • Regulated virulence controls the ability of a pathogen to compete with the gut microbiota
    • 15 Kamada, N., et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336 (2012), 1325–1329.
    • (2012) Science , vol.336 , pp. 1325-1329
    • Kamada, N.1
  • 16
    • 84885573828 scopus 로고    scopus 로고
    • Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens
    • 16 Ng, K.M., et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502 (2013), 96–99.
    • (2013) Nature , vol.502 , pp. 96-99
    • Ng, K.M.1
  • 17
    • 84855673017 scopus 로고    scopus 로고
    • Bacteriocin production: a probiotic trait?
    • 17 Dobson, A., et al. Bacteriocin production: a probiotic trait?. Appl. Environ. Microbiol. 78 (2012), 1–6.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 1-6
    • Dobson, A.1
  • 18
    • 84945964162 scopus 로고    scopus 로고
    • Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract
    • 18 Kommineni, S., et al. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 526 (2015), 719–722.
    • (2015) Nature , vol.526 , pp. 719-722
    • Kommineni, S.1
  • 19
    • 53649098280 scopus 로고    scopus 로고
    • Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits
    • 19 Brandl, K., et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455 (2008), 804–807.
    • (2008) Nature , vol.455 , pp. 804-807
    • Brandl, K.1
  • 20
    • 84908075358 scopus 로고    scopus 로고
    • Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen
    • 20 Pham, T.A., et al. Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe 16 (2014), 504–516.
    • (2014) Cell Host Microbe , vol.16 , pp. 504-516
    • Pham, T.A.1
  • 21
    • 84908403149 scopus 로고    scopus 로고
    • Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness
    • 21 Pickard, J.M., et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514 (2014), 638–641.
    • (2014) Nature , vol.514 , pp. 638-641
    • Pickard, J.M.1
  • 22
    • 80054122238 scopus 로고    scopus 로고
    • The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine
    • 22 Vaishnava, S., et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334 (2011), 255–258.
    • (2011) Science , vol.334 , pp. 255-258
    • Vaishnava, S.1
  • 23
    • 84959431760 scopus 로고    scopus 로고
    • TLR-7 activation enhances IL-22-mediated colonization resistance against vancomycin-resistant enterococcus
    • 23 Abt, M.C., et al. TLR-7 activation enhances IL-22-mediated colonization resistance against vancomycin-resistant enterococcus. Sci. Transl. Med, 8, 2016, 327ra25.
    • (2016) Sci. Transl. Med , vol.8 , pp. 327ra25
    • Abt, M.C.1
  • 24
    • 77952316009 scopus 로고    scopus 로고
    • Inflammatory bowel disease
    • 24 Kaser, A., et al. Inflammatory bowel disease. Annu. Rev. Immunol. 28 (2010), 573–621.
    • (2010) Annu. Rev. Immunol. , vol.28 , pp. 573-621
    • Kaser, A.1
  • 25
    • 70049098070 scopus 로고    scopus 로고
    • Origin of the lamina propria dendritic cell network
    • 25 Bogunovic, M., et al. Origin of the lamina propria dendritic cell network. Immunity 31 (2009), 513–525.
    • (2009) Immunity , vol.31 , pp. 513-525
    • Bogunovic, M.1
  • 26
    • 79959664629 scopus 로고    scopus 로고
    • The light and dark sides of intestinal intraepithelial lymphocytes
    • 26 Cheroutre, H., et al. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11 (2011), 445–456.
    • (2011) Nat. Rev. Immunol. , vol.11 , pp. 445-456
    • Cheroutre, H.1
  • 27
    • 79952986650 scopus 로고    scopus 로고
    • + innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota
    • + innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat. Immunol. 12 (2011), 320–326.
    • (2011) Nat. Immunol. , vol.12 , pp. 320-326
    • Sawa, S.1
  • 28
    • 84921313153 scopus 로고    scopus 로고
    • Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice
    • 28 Bain, C.C., et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat. Immunol. 15 (2014), 929–937.
    • (2014) Nat. Immunol. , vol.15 , pp. 929-937
    • Bain, C.C.1
  • 29
    • 48749107414 scopus 로고    scopus 로고
    • + inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii
    • + inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii. Immunity 29 (2008), 306–317.
    • (2008) Immunity , vol.29 , pp. 306-317
    • Dunay, I.R.1
  • 30
    • 84896064402 scopus 로고    scopus 로고
    • Gut microbiota promote hematopoiesis to control bacterial infection
    • 30 Khosravi, A., et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 15 (2014), 374–381.
    • (2014) Cell Host Microbe , vol.15 , pp. 374-381
    • Khosravi, A.1
  • 31
    • 34548764423 scopus 로고    scopus 로고
    • Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses
    • 31 Denning, T.L., et al. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 8 (2007), 1086–1094.
    • (2007) Nat. Immunol. , vol.8 , pp. 1086-1094
    • Denning, T.L.1
  • 32
    • 84902603069 scopus 로고    scopus 로고
    • Maturation of the enteric mucosal innate immune system during the postnatal period
    • 32 Fulde, M., Hornef, M.W., Maturation of the enteric mucosal innate immune system during the postnatal period. Immunol. Rev. 260 (2014), 21–34.
    • (2014) Immunol. Rev. , vol.260 , pp. 21-34
    • Fulde, M.1    Hornef, M.W.2
  • 33
    • 84878644664 scopus 로고    scopus 로고
    • Innate immune signaling in the pathogenesis of necrotizing enterocolitis
    • 33 Hackam, D.J., et al. Innate immune signaling in the pathogenesis of necrotizing enterocolitis. Clin. Dev. Immunol., 2013, 2013, 475415.
    • (2013) Clin. Dev. Immunol. , vol.2013 , pp. 475415
    • Hackam, D.J.1
  • 34
    • 84872411376 scopus 로고    scopus 로고
    • MicroRNA-146a-mediated downregulation of IRAK1 protects mouse and human small intestine against ischemia/reperfusion injury
    • 34 Chassin, C., et al. MicroRNA-146a-mediated downregulation of IRAK1 protects mouse and human small intestine against ischemia/reperfusion injury. EMBO Mol. Med. 4 (2012), 1308–1319.
    • (2012) EMBO Mol. Med. , vol.4 , pp. 1308-1319
    • Chassin, C.1
  • 35
    • 84876721004 scopus 로고    scopus 로고
    • Mechanisms of gut barrier failure in the pathogenesis of necrotizing enterocolitis: Toll-like receptors throw the switch
    • 35 Hackam, D.J., et al. Mechanisms of gut barrier failure in the pathogenesis of necrotizing enterocolitis: Toll-like receptors throw the switch. Semin. Pediatr. Surg. 22 (2013), 76–82.
    • (2013) Semin. Pediatr. Surg. , vol.22 , pp. 76-82
    • Hackam, D.J.1
  • 36
    • 84868336049 scopus 로고    scopus 로고
    • Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease
    • 36 Jostins, L., et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491 (2012), 119–124.
    • (2012) Nature , vol.491 , pp. 119-124
    • Jostins, L.1
  • 37
    • 70349293592 scopus 로고    scopus 로고
    • The mucosal firewalls against commensal intestinal microbes
    • 37 Macpherson, A.J., et al. The mucosal firewalls against commensal intestinal microbes. Semin. Immunopathol. 31 (2009), 145–149.
    • (2009) Semin. Immunopathol. , vol.31 , pp. 145-149
    • Macpherson, A.J.1
  • 38
    • 84962433328 scopus 로고    scopus 로고
    • Secretory IgA in the coordination of establishment and maintenance of the microbiota
    • 38 Pabst, O., et al. Secretory IgA in the coordination of establishment and maintenance of the microbiota. Trends Immunol. 37 (2016), 287–296.
    • (2016) Trends Immunol. , vol.37 , pp. 287-296
    • Pabst, O.1
  • 39
    • 0015173745 scopus 로고
    • Serum and secretory IgA in axenic and holoxenic mice
    • 39 Benveniste, J., et al. Serum and secretory IgA in axenic and holoxenic mice. J. Immunol. 107 (1971), 1656–1662.
    • (1971) J. Immunol. , vol.107 , pp. 1656-1662
    • Benveniste, J.1
  • 40
    • 84939570686 scopus 로고    scopus 로고
    • The bilateral responsiveness between intestinal microbes and IgA
    • 40 Macpherson, A.J., et al. The bilateral responsiveness between intestinal microbes and IgA. Trends Immunol. 36 (2015), 460–470.
    • (2015) Trends Immunol. , vol.36 , pp. 460-470
    • Macpherson, A.J.1
  • 41
    • 68149091349 scopus 로고    scopus 로고
    • Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism
    • 41 Slack, E., et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325 (2009), 617–620.
    • (2009) Science , vol.325 , pp. 617-620
    • Slack, E.1
  • 42
    • 84941647683 scopus 로고    scopus 로고
    • BALB/c and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity
    • 42 Fransen, F., et al. BALB/c and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity. Immunity 43 (2015), 527–540.
    • (2015) Immunity , vol.43 , pp. 527-540
    • Fransen, F.1
  • 43
    • 38849145753 scopus 로고    scopus 로고
    • Secretory IgA mediates bacterial translocation to dendritic cells in mouse Peyer's patches with restriction to mucosal compartment
    • 43 Kadaoui, K.A., Corthesy, B., Secretory IgA mediates bacterial translocation to dendritic cells in mouse Peyer's patches with restriction to mucosal compartment. J. Immunol. 179 (2007), 7751–7757.
    • (2007) J. Immunol. , vol.179 , pp. 7751-7757
    • Kadaoui, K.A.1    Corthesy, B.2
  • 44
    • 84991929179 scopus 로고    scopus 로고
    • Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy
    • 44 Kau, A.L., et al. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci. Transl. Med., 7, 2015, 276ra24.
    • (2015) Sci. Transl. Med. , vol.7 , pp. 276ra24
    • Kau, A.L.1
  • 45
    • 84907300008 scopus 로고    scopus 로고
    • Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease
    • 45 Palm, N.W., et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158 (2014), 1000–1010.
    • (2014) Cell , vol.158 , pp. 1000-1010
    • Palm, N.W.1
  • 46
    • 84965176609 scopus 로고    scopus 로고
    • Maternal IgG and IgA antibodies dampen mucosal T helper cell responses in early life
    • 46 Koch, M.A., et al. Maternal IgG and IgA antibodies dampen mucosal T helper cell responses in early life. Cell 165 (2016), 827–841.
    • (2016) Cell , vol.165 , pp. 827-841
    • Koch, M.A.1
  • 47
    • 84960388607 scopus 로고    scopus 로고
    • Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens
    • 47 Zeng, M.Y., et al. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity 44 (2016), 647–658.
    • (2016) Immunity , vol.44 , pp. 647-658
    • Zeng, M.Y.1
  • 48
    • 84920809160 scopus 로고    scopus 로고
    • Gut microbiota elicits a protective immune response against malaria transmission
    • 48 Yilmaz, B., et al. Gut microbiota elicits a protective immune response against malaria transmission. Cell 159 (2014), 1277–1289.
    • (2014) Cell , vol.159 , pp. 1277-1289
    • Yilmaz, B.1
  • 49
    • 35848931007 scopus 로고    scopus 로고
    • IgA response to symbiotic bacteria as a mediator of gut homeostasis
    • 49 Peterson, D.A., et al. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2 (2007), 328–339.
    • (2007) Cell Host Microbe , vol.2 , pp. 328-339
    • Peterson, D.A.1
  • 50
    • 80055118611 scopus 로고    scopus 로고
    • Biofilm and planktonic pneumococci demonstrate disparate immunoreactivity to human convalescent sera
    • 50 Sanchez, C.J., et al. Biofilm and planktonic pneumococci demonstrate disparate immunoreactivity to human convalescent sera. BMC Microbiol., 11, 2011, 245.
    • (2011) BMC Microbiol. , vol.11 , pp. 245
    • Sanchez, C.J.1
  • 51
    • 53349164200 scopus 로고    scopus 로고
    • Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses
    • 2008
    • 51 Hall, J.A., et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29 (2008), 637–649 2008.
    • (2008) Immunity , vol.29 , pp. 637-649
    • Hall, J.A.1
  • 52
    • 70349742524 scopus 로고    scopus 로고
    • The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses
    • 52 Gaboriau-Routhiau, V., et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31 (2009), 677–689.
    • (2009) Immunity , vol.31 , pp. 677-689
    • Gaboriau-Routhiau, V.1
  • 53
    • 70350343544 scopus 로고    scopus 로고
    • Induction of intestinal Th17 cells by segmented filamentous bacteria
    • 53 Ivanov, I.I., et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139 (2009), 485–498.
    • (2009) Cell , vol.139 , pp. 485-498
    • Ivanov, I.I.1
  • 54
    • 84857444876 scopus 로고    scopus 로고
    • + dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense
    • + dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 36 (2012), 276–287.
    • (2012) Immunity , vol.36 , pp. 276-287
    • Kinnebrew, M.A.1
  • 55
    • 84897053496 scopus 로고    scopus 로고
    • Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis
    • 55 Mortha, A., et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science, 343, 2014, 1249288.
    • (2014) Science , vol.343 , pp. 1249288
    • Mortha, A.1
  • 56
    • 84943638660 scopus 로고    scopus 로고
    • An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses
    • 56 Sano, T., et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 163 (2015), 381–393.
    • (2015) Cell , vol.163 , pp. 381-393
    • Sano, T.1
  • 57
    • 84863151799 scopus 로고    scopus 로고
    • Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine
    • 57 Shaw, M.H., et al. Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J. Exp. Med. 209 (2012), 251–258.
    • (2012) J. Exp. Med. , vol.209 , pp. 251-258
    • Shaw, M.H.1
  • 58
    • 84901979873 scopus 로고    scopus 로고
    • Focused specificity of intestinal TH17 cells towards commensal bacterial antigens
    • 58 Yang, Y., et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510 (2014), 152–156.
    • (2014) Nature , vol.510 , pp. 152-156
    • Yang, Y.1
  • 59
    • 84867908677 scopus 로고    scopus 로고
    • Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis
    • 59 Cao, A.T., et al. Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis. J. Immunol. 189 (2012), 4666–4673.
    • (2012) J. Immunol. , vol.189 , pp. 4666-4673
    • Cao, A.T.1
  • 60
    • 73349099737 scopus 로고    scopus 로고
    • A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota
    • 60 Cong, Y., et al. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 19256–19261.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 19256-19261
    • Cong, Y.1
  • 61
    • 84960336674 scopus 로고    scopus 로고
    • Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation
    • 61 Kumar, P., et al. Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation. Immunity 44 (2016), 659–671.
    • (2016) Immunity , vol.44 , pp. 659-671
    • Kumar, P.1
  • 62
    • 84898685253 scopus 로고    scopus 로고
    • Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses
    • 62 Lécuyer, E., et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 40 (2014), 608–620.
    • (2014) Immunity , vol.40 , pp. 608-620
    • Lécuyer, E.1
  • 63
    • 62449202866 scopus 로고    scopus 로고
    • + T cells in gut Peyer's patches
    • + T cells in gut Peyer's patches. Science 323 (2009), 1488–1492.
    • (2009) Science , vol.323 , pp. 1488-1492
    • Tsuji, M.1
  • 64
    • 84928704650 scopus 로고    scopus 로고
    • Commensal-dendritic-cell interaction specifies a unique protective skin immune signature
    • 64 Naik, S., et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520 (2015), 104–108.
    • (2015) Nature , vol.520 , pp. 104-108
    • Naik, S.1
  • 65
    • 84865559289 scopus 로고    scopus 로고
    • Compartmentalized control of skin immunity by resident commensals
    • 65 Naik, S., et al. Compartmentalized control of skin immunity by resident commensals. Science 337 (2012), 1115–1119.
    • (2012) Science , vol.337 , pp. 1115-1119
    • Naik, S.1
  • 66
    • 77953913586 scopus 로고    scopus 로고
    • Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells
    • 66 Wu, H.J., et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32 (2010), 815–827.
    • (2010) Immunity , vol.32 , pp. 815-827
    • Wu, H.J.1
  • 67
    • 84975246853 scopus 로고    scopus 로고
    • Pulmonary Th17 antifungal immunity is regulated by the gut mcrobiome
    • 67 McAleer, J.P., et al. Pulmonary Th17 antifungal immunity is regulated by the gut mcrobiome. J. Immunol. 197 (2016), 97–107.
    • (2016) J. Immunol. , vol.197 , pp. 97-107
    • McAleer, J.P.1
  • 68
    • 84864311450 scopus 로고    scopus 로고
    • Commensal bacteria calibrate the activation threshold of innate antiviral immunity
    • 68 Abt, M.C., et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37 (2012), 158–170.
    • (2012) Immunity , vol.37 , pp. 158-170
    • Abt, M.C.1
  • 69
    • 79955121049 scopus 로고    scopus 로고
    • Microbiota regulates immune defense against respiratory tract influenza A virus infection
    • 69 Ichinohe, T., et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 5354–5359.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 5354-5359
    • Ichinohe, T.1
  • 70
    • 84901331442 scopus 로고    scopus 로고
    • The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota
    • 70 Balmer, M.L., et al. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci. Transl. Med., 6, 2014, 237ra66.
    • (2014) Sci. Transl. Med. , vol.6 , pp. 237ra66
    • Balmer, M.L.1
  • 71
    • 22144490199 scopus 로고    scopus 로고
    • An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system
    • 71 Mazmanian, S.K., et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122 (2005), 107–118.
    • (2005) Cell , vol.122 , pp. 107-118
    • Mazmanian, S.K.1
  • 72
    • 84892774558 scopus 로고    scopus 로고
    • Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells
    • 72 An, D., et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156 (2014), 123–133.
    • (2014) Cell , vol.156 , pp. 123-133
    • An, D.1
  • 73
    • 77949420644 scopus 로고    scopus 로고
    • The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update
    • 73 Okada, H., et al. The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin. Exp. Immunol. 160 (2010), 1–9.
    • (2010) Clin. Exp. Immunol. , vol.160 , pp. 1-9
    • Okada, H.1
  • 74
    • 84888123097 scopus 로고    scopus 로고
    • Recognition of gut microbiota by NOD2 is essential for the homeostasis of intestinal intraepithelial lymphocytes
    • 74 Jiang, W., et al. Recognition of gut microbiota by NOD2 is essential for the homeostasis of intestinal intraepithelial lymphocytes. J. Exp. Med. 210 (2013), 2465–2476.
    • (2013) J. Exp. Med. , vol.210 , pp. 2465-2476
    • Jiang, W.1
  • 75
    • 77956478866 scopus 로고    scopus 로고
    • Commensal microflora and interferon-gamma promote steady-state interleukin-7 production in vivo
    • 75 Shalapour, S., et al. Commensal microflora and interferon-gamma promote steady-state interleukin-7 production in vivo. Eur. J. Immunol. 40 (2010), 2391–2400.
    • (2010) Eur. J. Immunol. , vol.40 , pp. 2391-2400
    • Shalapour, S.1
  • 76
    • 84940890004 scopus 로고    scopus 로고
    • Novel players in coeliac disease pathogenesis: role of the gut microbiota
    • 76 Verdu, E.F., et al. Novel players in coeliac disease pathogenesis: role of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 12 (2015), 497–506.
    • (2015) Nat. Rev. Gastroenterol. Hepatol. , vol.12 , pp. 497-506
    • Verdu, E.F.1
  • 77
    • 84880285461 scopus 로고    scopus 로고
    • Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection
    • 77 Grainger, J.R., et al. Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection. Nat. Med. 19 (2013), 713–721.
    • (2013) Nat. Med. , vol.19 , pp. 713-721
    • Grainger, J.R.1
  • 78
    • 70449532980 scopus 로고    scopus 로고
    • + Treg cell number and acquisition of effector cell phenotype during lethal infection
    • + Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 31 (2009), 772–786.
    • (2009) Immunity , vol.31 , pp. 772-786
    • Oldenhove, G.1
  • 79
    • 84859416933 scopus 로고    scopus 로고
    • Regulatory T cells: mechanisms of differentiation and function
    • 79 Josefowicz, S.Z., et al. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30 (2012), 531–564.
    • (2012) Annu. Rev. Immunol. , vol.30 , pp. 531-564
    • Josefowicz, S.Z.1
  • 80
    • 85027947787 scopus 로고    scopus 로고
    • Induction of colonic regulatory T cells by indigenous Clostridium species
    • 80 Atarashi, K., et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331 (2011), 337–341.
    • (2011) Science , vol.331 , pp. 337-341
    • Atarashi, K.1
  • 81
    • 84881477044 scopus 로고    scopus 로고
    • Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota
    • 81 Atarashi, K., et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500 (2013), 232–236.
    • (2013) Nature , vol.500 , pp. 232-236
    • Atarashi, K.1
  • 82
    • 84904384753 scopus 로고    scopus 로고
    • + T cells regulate immunoglobulin A selection and facilitate diversification of bacterial species responsible for immune homeostasis
    • + T cells regulate immunoglobulin A selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41 (2014), 152–165.
    • (2014) Immunity , vol.41 , pp. 152-165
    • Kawamoto, S.1
  • 83
    • 84890550163 scopus 로고    scopus 로고
    • Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
    • 83 Arpaia, N., et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504 (2013), 451–455.
    • (2013) Nature , vol.504 , pp. 451-455
    • Arpaia, N.1
  • 84
    • 84890564250 scopus 로고    scopus 로고
    • Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
    • 84 Furusawa, Y., et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504 (2013), 446–450.
    • (2013) Nature , vol.504 , pp. 446-450
    • Furusawa, Y.1
  • 85
    • 84926367699 scopus 로고    scopus 로고
    • Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome
    • 85 Macia, L., et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun., 6, 2015, 6734.
    • (2015) Nat. Commun. , vol.6 , pp. 6734
    • Macia, L.1
  • 86
    • 70350666634 scopus 로고    scopus 로고
    • Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43
    • 86 Maslowski, K.M., et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461 (2009), 1282–1286.
    • (2009) Nature , vol.461 , pp. 1282-1286
    • Maslowski, K.M.1
  • 87
    • 84881068658 scopus 로고    scopus 로고
    • The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
    • 87 Smith, P.M., et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341 (2013), 569–573.
    • (2013) Science , vol.341 , pp. 569-573
    • Smith, P.M.1
  • 88
    • 84947432484 scopus 로고    scopus 로고
    • The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation
    • 88 Zaiss, M.M., et al. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. Immunity 43 (2015), 998–1010.
    • (2015) Immunity , vol.43 , pp. 998-1010
    • Zaiss, M.M.1
  • 89
    • 84940547063 scopus 로고    scopus 로고
    • Mucosal immunology. The microbiota regulates type 2 immunity through RORγt(+) T cells
    • 89 Ohnmacht, C., et al. Mucosal immunology. The microbiota regulates type 2 immunity through RORγt(+) T cells. Science 349 (2015), 989–993.
    • (2015) Science , vol.349 , pp. 989-993
    • Ohnmacht, C.1
  • 90
    • 84940077758 scopus 로고    scopus 로고
    • Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ(+) regulatory T cells
    • 90 Sefik, E., et al. Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ(+) regulatory T cells. Science 349 (2015), 993–997.
    • (2015) Science , vol.349 , pp. 993-997
    • Sefik, E.1
  • 91
    • 79956311926 scopus 로고    scopus 로고
    • The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota
    • 91 Round, J.L., et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332 (2011), 974–977.
    • (2011) Science , vol.332 , pp. 974-977
    • Round, J.L.1
  • 92
    • 84959449921 scopus 로고    scopus 로고
    • Commensal A4 bacteria inhibit intestinal Th2-cell responses through induction of dendritic cell TGF-β production
    • 92 Wu, W., et al. Commensal A4 bacteria inhibit intestinal Th2-cell responses through induction of dendritic cell TGF-β production. Eur. J. Immunol. 46 (2016), 1162–1167.
    • (2016) Eur. J. Immunol. , vol.46 , pp. 1162-1167
    • Wu, W.1
  • 93
    • 84953231157 scopus 로고    scopus 로고
    • Cutting edge: IL-36 receptor promotes resolution of intestinal damage
    • 93 Medina-Contreras, O., et al. Cutting edge: IL-36 receptor promotes resolution of intestinal damage. J. Immunol. 196 (2016), 34–38.
    • (2016) J. Immunol. , vol.196 , pp. 34-38
    • Medina-Contreras, O.1
  • 94
    • 84976288773 scopus 로고    scopus 로고
    • Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics
    • 94 Blanton, L.V., et al. Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. Science, 352, 2016, 1533.
    • (2016) Science , vol.352 , pp. 1533
    • Blanton, L.V.1
  • 95
    • 84976324041 scopus 로고    scopus 로고
    • Microbiota as therapeutic targets
    • 95 Xavier, R.J., Microbiota as therapeutic targets. Dig. Dis. 34 (2016), 558–565.
    • (2016) Dig. Dis. , vol.34 , pp. 558-565
    • Xavier, R.J.1
  • 96
    • 84938803495 scopus 로고    scopus 로고
    • Diet and specific microbial exposure trigger features of environmental enteropathy in a novel murine model
    • 96 Brown, E.M., et al. Diet and specific microbial exposure trigger features of environmental enteropathy in a novel murine model. Nat. Commun., 6, 2015, 7806.
    • (2015) Nat. Commun. , vol.6 , pp. 7806
    • Brown, E.M.1
  • 97
    • 84991688488 scopus 로고    scopus 로고
    • Fecal microbiota transplantation in inflammatory bowel disease: the quest for the holy grail
    • Published online July 27, 2016
    • 97 Pigneur, B., Sokol, H., Fecal microbiota transplantation in inflammatory bowel disease: the quest for the holy grail. Mucosal. Immunol., 2016, 10.1038/mi.2016.67 Published online July 27, 2016.
    • (2016) Mucosal. Immunol.
    • Pigneur, B.1    Sokol, H.2
  • 98
    • 84931567250 scopus 로고    scopus 로고
    • The inflammasome: learning from bacterial evasion strategies
    • 98 Shin, S., Brodsky, I.E., The inflammasome: learning from bacterial evasion strategies. Semin. Immunol. 27 (2015), 102–110.
    • (2015) Semin. Immunol. , vol.27 , pp. 102-110
    • Shin, S.1    Brodsky, I.E.2
  • 99
    • 67651091732 scopus 로고    scopus 로고
    • Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system
    • 99 Vance, R.E., et al. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6 (2009), 10–21.
    • (2009) Cell Host Microbe , vol.6 , pp. 10-21
    • Vance, R.E.1
  • 100
    • 84866436436 scopus 로고    scopus 로고
    • Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses
    • 100 Hand, T.W., et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science 337 (2012), 1553–1556.
    • (2012) Science , vol.337 , pp. 1553-1556
    • Hand, T.W.1
  • 101
    • 84908121712 scopus 로고    scopus 로고
    • Interleukin-22 regulates the complement system to promote resistance against pathobionts after pathogen-induced intestinal damage
    • 101 Hasegawa, M., et al. Interleukin-22 regulates the complement system to promote resistance against pathobionts after pathogen-induced intestinal damage. Immunity 41 (2014), 620–632.
    • (2014) Immunity , vol.41 , pp. 620-632
    • Hasegawa, M.1
  • 102
    • 33845428754 scopus 로고    scopus 로고
    • Gram-negative bacteria aggravate murine small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii
    • 102 Heimesaat, M.M., et al. Gram-negative bacteria aggravate murine small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii. J. Immunol. 177 (2006), 8785–8795.
    • (2006) J. Immunol. , vol.177 , pp. 8785-8795
    • Heimesaat, M.M.1
  • 103
    • 34547684651 scopus 로고    scopus 로고
    • Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae
    • 103 Lupp, C., et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2 (2007), 119–129.
    • (2007) Cell Host Microbe , vol.2 , pp. 119-129
    • Lupp, C.1
  • 104
    • 84880540665 scopus 로고    scopus 로고
    • Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism
    • 104 Vujkovic-Cvijin, I., et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci. Transl. Med., 5, 2013, 193ra91.
    • (2013) Sci. Transl. Med. , vol.5 , pp. 193ra91
    • Vujkovic-Cvijin, I.1
  • 105
    • 84949255269 scopus 로고    scopus 로고
    • Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling
    • 105 Levy, M., et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163 (2015), 1428–1443.
    • (2015) Cell , vol.163 , pp. 1428-1443
    • Levy, M.1
  • 106
    • 80054927254 scopus 로고    scopus 로고
    • Synergy between intraepithelial lymphocytes and lamina propria T cells drives intestinal inflammation during infection
    • 106 Egan, C.E., et al. Synergy between intraepithelial lymphocytes and lamina propria T cells drives intestinal inflammation during infection. Mucosal. Immunol. 4 (2011), 658–670.
    • (2011) Mucosal. Immunol. , vol.4 , pp. 658-670
    • Egan, C.E.1
  • 107
    • 84870530500 scopus 로고    scopus 로고
    • Anti-gluten immune response following Toxoplasma gondii infection in mice
    • 107 Severance, E.G., et al. Anti-gluten immune response following Toxoplasma gondii infection in mice. PLoS ONE, 7, 2012, e50991.
    • (2012) PLoS ONE , vol.7 , pp. e50991
    • Severance, E.G.1
  • 108
    • 84969903059 scopus 로고    scopus 로고
    • Bacteriocin from epidemic Listeria strains alters the host intestinal microbiota to favor infection
    • 108 Quereda, J.J., et al. Bacteriocin from epidemic Listeria strains alters the host intestinal microbiota to favor infection. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 5706–5711.
    • (2016) Proc. Natl. Acad. Sci. U. S. A. , vol.113 , pp. 5706-5711
    • Quereda, J.J.1
  • 109
    • 84943653785 scopus 로고    scopus 로고
    • Microbiota-dependent sequelae of acute infection compromise tissue-specific immunity
    • 109 Fonseca, D.M., et al. Microbiota-dependent sequelae of acute infection compromise tissue-specific immunity. Cell 163 (2015), 354–366.
    • (2015) Cell , vol.163 , pp. 354-366
    • Fonseca, D.M.1
  • 110
    • 77953904042 scopus 로고    scopus 로고
    • Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine
    • 110 Cadwell, K., et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 141 (2010), 1135–1145.
    • (2010) Cell , vol.141 , pp. 1135-1145
    • Cadwell, K.1
  • 111
    • 84959458301 scopus 로고    scopus 로고
    • Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease
    • 111 Kamdar, K., et al. Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease. Cell Host Microbe 19 (2016), 21–31.
    • (2016) Cell Host Microbe , vol.19 , pp. 21-31
    • Kamdar, K.1
  • 112
    • 35348857386 scopus 로고    scopus 로고
    • Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases
    • 112 Frank, D.N., et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U. S. A. 104 (2007), 13780–13785.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 13780-13785
    • Frank, D.N.1
  • 113
    • 83555177321 scopus 로고    scopus 로고
    • Mesenteric fat as a source of C reactive protein and as a target for bacterial translocation in Crohn's disease
    • 113 Peyrin-Biroulet, L., et al. Mesenteric fat as a source of C reactive protein and as a target for bacterial translocation in Crohn's disease. Gut 61 (2012), 78–85.
    • (2012) Gut , vol.61 , pp. 78-85
    • Peyrin-Biroulet, L.1
  • 114
    • 84886313356 scopus 로고    scopus 로고
    • Differences in visceral fat and fat bacterial colonization between ulcerative colitis and Crohn's disease. An in vivo and in vitro study
    • 114 Zulian, A., et al. Differences in visceral fat and fat bacterial colonization between ulcerative colitis and Crohn's disease. An in vivo and in vitro study. PLoS ONE, 8, 2013, e78495.
    • (2013) PLoS ONE , vol.8 , pp. e78495
    • Zulian, A.1
  • 115
    • 84857058635 scopus 로고    scopus 로고
    • Gastrointestinal infection as a trigger for inflammatory bowel disease
    • 115 Mann, E.A., Saeed, S.A., Gastrointestinal infection as a trigger for inflammatory bowel disease. Curr. Opin. Gastroenterol. 28 (2012), 24–29.
    • (2012) Curr. Opin. Gastroenterol. , vol.28 , pp. 24-29
    • Mann, E.A.1    Saeed, S.A.2
  • 116
    • 84870545289 scopus 로고    scopus 로고
    • The chronic gastrointestinal consequences associated with campylobacter
    • 116 Riddle, M.S., et al. The chronic gastrointestinal consequences associated with campylobacter. Curr. Gastroenterol. Rep. 14 (2012), 395–405.
    • (2012) Curr. Gastroenterol. Rep. , vol.14 , pp. 395-405
    • Riddle, M.S.1
  • 117
    • 79851510655 scopus 로고    scopus 로고
    • Enteric Salmonella or Campylobacter infections and the risk of inflammatory bowel disease
    • 117 Jess, T., et al. Enteric Salmonella or Campylobacter infections and the risk of inflammatory bowel disease. Gut 60 (2011), 318–324.
    • (2011) Gut , vol.60 , pp. 318-324
    • Jess, T.1
  • 118
    • 84857800289 scopus 로고    scopus 로고
    • Detection bias and the association between inflammatory bowel disease and Salmonella and Campylobacter infection
    • 118 Riddle, M.S., Porter, C.K., Detection bias and the association between inflammatory bowel disease and Salmonella and Campylobacter infection. Gut, 61, 2012, 635.
    • (2012) Gut , vol.61 , pp. 635
    • Riddle, M.S.1    Porter, C.K.2
  • 119
    • 84909978282 scopus 로고    scopus 로고
    • Enteric bacteria promote human and mouse norovirus infection of B cells
    • 119 Jones, M.K., et al. Enteric bacteria promote human and mouse norovirus infection of B cells. Science 346 (2014), 755–759.
    • (2014) Science , vol.346 , pp. 755-759
    • Jones, M.K.1
  • 120
    • 80054115012 scopus 로고    scopus 로고
    • Successful transmission of a retrovirus depends on the commensal microbiota
    • 120 Kane, M., et al. Successful transmission of a retrovirus depends on the commensal microbiota. Science 334 (2011), 245–249.
    • (2011) Science , vol.334 , pp. 245-249
    • Kane, M.1
  • 121
    • 80054091498 scopus 로고    scopus 로고
    • Intestinal microbiota promote enteric virus replication and systemic pathogenesis
    • 121 Kuss, S.K., et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334 (2011), 249–252.
    • (2011) Science , vol.334 , pp. 249-252
    • Kuss, S.K.1
  • 122
    • 84892621089 scopus 로고    scopus 로고
    • Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus
    • 122 Robinson, C.M., et al. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus. Cell Host Microbe 15 (2014), 36–46.
    • (2014) Cell Host Microbe , vol.15 , pp. 36-46
    • Robinson, C.M.1
  • 123
    • 84944192138 scopus 로고    scopus 로고
    • Mammalian lipopolysaccharide receptors incorporated into the retroviral envelope augment virus transmission
    • 123 Wilks, J., et al. Mammalian lipopolysaccharide receptors incorporated into the retroviral envelope augment virus transmission. Cell Host Microbe 18 (2015), 456–462.
    • (2015) Cell Host Microbe , vol.18 , pp. 456-462
    • Wilks, J.1
  • 124
    • 84922481409 scopus 로고    scopus 로고
    • Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection
    • 124 Baldridge, M.T., et al. Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection. Science 347 (2015), 266–269.
    • (2015) Science , vol.347 , pp. 266-269
    • Baldridge, M.T.1
  • 125
    • 77953605339 scopus 로고    scopus 로고
    • Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris
    • 125 Hayes, K.S., et al. Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris. Science 328 (2010), 1391–1394.
    • (2010) Science , vol.328 , pp. 1391-1394
    • Hayes, K.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.