-
1
-
-
84878948560
-
Molecular chaperone functions in protein folding and proteostasis
-
[1] Kim, Y.E., Hipp, M.S., Bracher, A., Hayer-Hartl, M., Ulrich Hartl, F., Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 82 (2013), 323–355, 10.1146/annurev-biochem-060208-092442.
-
(2013)
Annu. Rev. Biochem.
, vol.82
, pp. 323-355
-
-
Kim, Y.E.1
Hipp, M.S.2
Bracher, A.3
Hayer-Hartl, M.4
Ulrich Hartl, F.5
-
2
-
-
84859778293
-
mTOR signaling in growth control and disease
-
[2] Laplante, M., Sabatini, D.M., mTOR signaling in growth control and disease. Cell 149 (2012), 274–293, 10.1016/j.cell.2012.03.017.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
3
-
-
84878532557
-
Signal integration by mTORC1 coordinates nutrient input with biosynthetic output
-
[3] Dibble, C.C., Manning, B.D., Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat. Cell Biol. 15 (2013), 555–564, 10.1038/ncb2763.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 555-564
-
-
Dibble, C.C.1
Manning, B.D.2
-
4
-
-
84890149646
-
Where is mTOR and what is it doing there?
-
[4] Betz, C., Hall, M.N., Where is mTOR and what is it doing there?. J. Cell Biol. 203 (2013), 563–574, 10.1083/jcb.201306041.
-
(2013)
J. Cell Biol.
, vol.203
, pp. 563-574
-
-
Betz, C.1
Hall, M.N.2
-
5
-
-
84912123676
-
Growing knowledge of the mTOR signaling network
-
[5] Huang, K., Fingar, D.C., Growing knowledge of the mTOR signaling network. Semin. Cell. Dev. Biol. 36 (2014), 79–90, 10.1016/j.semcdb.2014.09.011.
-
(2014)
Semin. Cell. Dev. Biol.
, vol.36
, pp. 79-90
-
-
Huang, K.1
Fingar, D.C.2
-
6
-
-
84929502727
-
How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy
-
[6] Feng, Y., Yao, Z., Klionsky, D.J., How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol., 1–10, 2015, 10.1016/j.tcb.2015.02.002.
-
(2015)
Trends Cell Biol.
, vol.1-10
-
-
Feng, Y.1
Yao, Z.2
Klionsky, D.J.3
-
7
-
-
84912528393
-
mTOR and autophagy: a dynamic relationship governed by nutrients and energy
-
[7] Dunlop, E.A., Tee, A.R., mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Semin. Cell Dev. Biol. 36 (2014), 121–129, 10.1016/j.semcdb.2014.08.006.
-
(2014)
Semin. Cell Dev. Biol.
, vol.36
, pp. 121-129
-
-
Dunlop, E.A.1
Tee, A.R.2
-
8
-
-
34848886914
-
Autophagosome formation: core machinery and adaptations
-
[8] Xie, Z., Klionsky, D.J., Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9 (2007), 1102–1109, 10.1038/ncb1007-1102.
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 1102-1109
-
-
Xie, Z.1
Klionsky, D.J.2
-
9
-
-
84894114029
-
Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
-
[9] Menon, S., Dibble, C.C., Talbott, G., Hoxhaj, G., Valvezan, A.J., Takahashi, H., Cantley, L.C., Manning, B.D., Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156 (2014), 771–785, 10.1016/j.cell.2013.11.049.
-
(2014)
Cell
, vol.156
, pp. 771-785
-
-
Menon, S.1
Dibble, C.C.2
Talbott, G.3
Hoxhaj, G.4
Valvezan, A.J.5
Takahashi, H.6
Cantley, L.C.7
Manning, B.D.8
-
10
-
-
84865371057
-
TBC1D7 is a third subunit of the TSC1–TSC2 complex upstream of mTORC1
-
[10] Dibble, C.C., Elis, W., Menon, S., Qin, W., Klekota, J., Asara, J.M., Finan, P.M., Kwiatkowski, D.J., Murphy, L.O., Manning, B.D., TBC1D7 is a third subunit of the TSC1–TSC2 complex upstream of mTORC1. Mol. Cell 47 (2012), 535–546, 10.1016/j.molcel.2012.06.009.
-
(2012)
Mol. Cell
, vol.47
, pp. 535-546
-
-
Dibble, C.C.1
Elis, W.2
Menon, S.3
Qin, W.4
Klekota, J.5
Asara, J.M.6
Finan, P.M.7
Kwiatkowski, D.J.8
Murphy, L.O.9
Manning, B.D.10
-
11
-
-
84894212463
-
Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2
-
[11] Demetriades, C., Doumpas, N., Teleman, A.A., Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 156 (2014), 786–799, 10.1016/j.cell.2014.01.024.
-
(2014)
Cell
, vol.156
, pp. 786-799
-
-
Demetriades, C.1
Doumpas, N.2
Teleman, A.A.3
-
12
-
-
44449161481
-
The TSC1–TSC2 complex: a molecular switchboard controlling cell growth
-
[12] Huang, J., Manning, B.D., The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412 (2008), 179–190, 10.1042/BJ20080281.
-
(2008)
Biochem. J.
, vol.412
, pp. 179-190
-
-
Huang, J.1
Manning, B.D.2
-
13
-
-
0038433304
-
Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2
-
[13] Garami, A., Zwartkruis, F.J.T., Nobukuni, T., Joaquin, M., Roccio, M., Stocker, H., Kozma, S.C., Hafen, E., Bos, J.L., Thomas, G., Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell 11 (2003), 1457–1466, 10.1016/S1097-2765(03)00220-X.
-
(2003)
Mol. Cell
, vol.11
, pp. 1457-1466
-
-
Garami, A.1
Zwartkruis, F.J.T.2
Nobukuni, T.3
Joaquin, M.4
Roccio, M.5
Stocker, H.6
Kozma, S.C.7
Hafen, E.8
Bos, J.L.9
Thomas, G.10
-
14
-
-
33646143793
-
Localization of Rheb to the endomembrane is critical for its signaling function
-
[14] Buerger, C., DeVries, B., Stambolic, V., Localization of Rheb to the endomembrane is critical for its signaling function. Biochem. Biophys. Res. Commun. 344 (2006), 869–880, 10.1016/j.bbrc.2006.03.220.
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.344
, pp. 869-880
-
-
Buerger, C.1
DeVries, B.2
Stambolic, V.3
-
15
-
-
84872141223
-
mTOR direct interactions with Rheb-GTPase and raptor: sub-cellular localization using fluorescence lifetime imaging
-
[15] Yadav, R.B., Burgos, P., Parker, A.W., Iadevaia, V., Proud, C.G., Allen, R.A., O'Connell, J.P., Jeshtadi, A., Stubbs, C.D., Botchway, S.W., mTOR direct interactions with Rheb-GTPase and raptor: sub-cellular localization using fluorescence lifetime imaging. BMC Cell Biol., 14, 2013, 3, 10.1186/1471-2121-14-3.
-
(2013)
BMC Cell Biol.
, vol.14
, pp. 3
-
-
Yadav, R.B.1
Burgos, P.2
Parker, A.W.3
Iadevaia, V.4
Proud, C.G.5
Allen, R.A.6
O'Connell, J.P.7
Jeshtadi, A.8
Stubbs, C.D.9
Botchway, S.W.10
-
16
-
-
84885105969
-
A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS
-
[16] Zhang, J., Kim, J., Alexander, A., Cai, S., Tripathi, D.N., Dere, R., Tee, A.R., Tait-Mulder, J., Di Nardo, A., Han, J.M., Kwiatkowski, E., Dunlop, E.A., Dodd, K.M., Folkerth, R.D., Faust, P.L., Kastan, M.B., Sahin, M., Walker, C.L., A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat. Cell Biol. 15 (2013), 1186–1196, 10.1038/ncb2822.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 1186-1196
-
-
Zhang, J.1
Kim, J.2
Alexander, A.3
Cai, S.4
Tripathi, D.N.5
Dere, R.6
Tee, A.R.7
Tait-Mulder, J.8
Di Nardo, A.9
Han, J.M.10
Kwiatkowski, E.11
Dunlop, E.A.12
Dodd, K.M.13
Folkerth, R.D.14
Faust, P.L.15
Kastan, M.B.16
Sahin, M.17
Walker, C.L.18
-
17
-
-
84891747382
-
The machinery of macroautophagy
-
[17] Feng, Y., He, D., Yao, Z., Klionsky, D.J., The machinery of macroautophagy. Cell Res. 24 (2014), 24–41, 10.1038/cr.2013.168.
-
(2014)
Cell Res.
, vol.24
, pp. 24-41
-
-
Feng, Y.1
He, D.2
Yao, Z.3
Klionsky, D.J.4
-
18
-
-
84955242756
-
Ubiquitin-dependent and independent signals in selective autophagy
-
[18] Khaminets, A., Behl, C., Dikic, I., Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 26 (2015), 6–16, 10.1016/j.tcb.2015.08.010.
-
(2015)
Trends Cell Biol.
, vol.26
, pp. 6-16
-
-
Khaminets, A.1
Behl, C.2
Dikic, I.3
-
19
-
-
65549142204
-
A role for ubiquitin in selective autophagy
-
[19] Kirkin, V., McEwan, D.G., Novak, I., Dikic, I., A role for ubiquitin in selective autophagy. Mol. Cell 34 (2009), 259–269, 10.1016/j.molcel.2009.04.026.
-
(2009)
Mol. Cell
, vol.34
, pp. 259-269
-
-
Kirkin, V.1
McEwan, D.G.2
Novak, I.3
Dikic, I.4
-
20
-
-
84880900881
-
Tension-induced autophagy: may the chaperone be with you
-
[20] Ulbricht, A., Höhfeld, J., Tension-induced autophagy: may the chaperone be with you. Autophagy 9 (2013), 920–922, 10.4161/auto.24213.
-
(2013)
Autophagy
, vol.9
, pp. 920-922
-
-
Ulbricht, A.1
Höhfeld, J.2
-
21
-
-
84965077472
-
Breaking BAG: the co-chaperone BAG3 in health and disease
-
[21] Behl, C., Breaking BAG: the co-chaperone BAG3 in health and disease. Trends Pharmacol. Sci., 2016, 10.1016/j.tips.2016.04.007.
-
(2016)
Trends Pharmacol. Sci.
-
-
Behl, C.1
-
22
-
-
77952851112
-
Chaperone-assisted degradation: multiple paths to destruction
-
[22] Kettern, N., Dreiseidler, M., Tawo, R., Höhfeld, J., Chaperone-assisted degradation: multiple paths to destruction. Biol. Chem. 391 (2010), 481–489, 10.1515/bc.2010.058.
-
(2010)
Biol. Chem.
, vol.391
, pp. 481-489
-
-
Kettern, N.1
Dreiseidler, M.2
Tawo, R.3
Höhfeld, J.4
-
23
-
-
77955989034
-
Identification of regulators of chaperone-mediated autophagy
-
[23] Bandyopadhyay, U., Sridhar, S., Kaushik, S., Kiffin, R., Cuervo, A.M., Identification of regulators of chaperone-mediated autophagy. Mol. Cell 39 (2010), 535–547, 10.1016/j.molcel.2010.08.004.
-
(2010)
Mol. Cell
, vol.39
, pp. 535-547
-
-
Bandyopadhyay, U.1
Sridhar, S.2
Kaushik, S.3
Kiffin, R.4
Cuervo, A.M.5
-
24
-
-
84881333631
-
Chaperone-assisted proteostasis is essential for mechanotransduction in mammalian cells
-
[24] Ulbricht, A., Arndt, V., Höhfeld, J., Chaperone-assisted proteostasis is essential for mechanotransduction in mammalian cells. Commun. Integr. Biol. 6 (2013), 1–7, 10.4161/cib.24925.
-
(2013)
Commun. Integr. Biol.
, vol.6
, pp. 1-7
-
-
Ulbricht, A.1
Arndt, V.2
Höhfeld, J.3
-
25
-
-
74549133523
-
Chaperone-assisted selective autophagy is essential for muscle maintenance
-
[25] Arndt, V., Dick, N., Tawo, R., Dreiseidler, M., Wenzel, D., Hesse, M., Fürst, D.O., Saftig, P., Saint, R., Fleischmann, B.K., Hoch, M., Höhfeld, J., Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr. Biol. 20 (2010), 143–148, 10.1016/j.cub.2009.11.022.
-
(2010)
Curr. Biol.
, vol.20
, pp. 143-148
-
-
Arndt, V.1
Dick, N.2
Tawo, R.3
Dreiseidler, M.4
Wenzel, D.5
Hesse, M.6
Fürst, D.O.7
Saftig, P.8
Saint, R.9
Fleischmann, B.K.10
Hoch, M.11
Höhfeld, J.12
-
26
-
-
38349105324
-
HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy
-
[26] Carra, S., Seguin, S.J., Lambert, H., Landry, J., HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy. J. Biol. Chem. 283 (2008), 1437–1444, 10.1074/jbc.M706304200.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 1437-1444
-
-
Carra, S.1
Seguin, S.J.2
Lambert, H.3
Landry, J.4
-
27
-
-
65449117176
-
Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3
-
[27] Gamerdinger, M., Hajieva, P., Kaya, A.M., Wolfrum, U., Hartl, F.U., Behl, C., Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J. 28 (2009), 889–901, 10.1038/emboj.2009.29.
-
(2009)
EMBO J.
, vol.28
, pp. 889-901
-
-
Gamerdinger, M.1
Hajieva, P.2
Kaya, A.M.3
Wolfrum, U.4
Hartl, F.U.5
Behl, C.6
-
28
-
-
84875210317
-
Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy
-
[28] Ulbricht, A., Eppler, F.J., Tapia, V.E., Van Der Ven, P.F.M., Hampe, N., Hersch, N., Vakeel, P., Stadel, D., Haas, A., Saftig, P., Behrends, C., Fürst, D.O., Volkmer, R., Hoffmann, B., Kolanus, W., Höhfeld, J., Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Curr. Biol. 23 (2013), 430–435, 10.1016/j.cub.2013.01.064.
-
(2013)
Curr. Biol.
, vol.23
, pp. 430-435
-
-
Ulbricht, A.1
Eppler, F.J.2
Tapia, V.E.3
Van Der Ven, P.F.M.4
Hampe, N.5
Hersch, N.6
Vakeel, P.7
Stadel, D.8
Haas, A.9
Saftig, P.10
Behrends, C.11
Fürst, D.O.12
Volkmer, R.13
Hoffmann, B.14
Kolanus, W.15
Höhfeld, J.16
-
29
-
-
84864318195
-
Chaperone-mediated autophagy: a unique way to enter the lysosome world
-
[29] Kaushik, S., Cuervo, A.M., Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 22 (2012), 407–417, 10.1016/j.tcb.2012.05.006.
-
(2012)
Trends Cell Biol.
, vol.22
, pp. 407-417
-
-
Kaushik, S.1
Cuervo, A.M.2
-
30
-
-
79551609332
-
BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins
-
[30] Gamerdinger, M., Kaya, A.M., Wolfrum, U., Clement, A.M., Behl, C., BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins. EMBO Rep. 12 (2011), 149–156, 10.1038/embor.2010.203.
-
(2011)
EMBO Rep.
, vol.12
, pp. 149-156
-
-
Gamerdinger, M.1
Kaya, A.M.2
Wolfrum, U.3
Clement, A.M.4
Behl, C.5
-
31
-
-
84920420065
-
BAG3 facilitates the clearance of endogenous tau in primary neurons
-
[31] Lei, Z., Brizzee, C., Johnson, G.V.W., BAG3 facilitates the clearance of endogenous tau in primary neurons. Neurobiol. Aging 36 (2015), 241–248.
-
(2015)
Neurobiol. Aging
, vol.36
, pp. 241-248
-
-
Lei, Z.1
Brizzee, C.2
Johnson, G.V.W.3
-
32
-
-
84887921310
-
Motoneuronal and muscle-selective removal of ALS-related misfolded proteins.
-
[32] Crippa, V., Galbiati, M., Boncoraglio, A., Rusmini, P., Onesto, E., Giorgetti, E., Cristofani, R., Zito, A., Poletti, A., Motoneuronal and muscle-selective removal of ALS-related misfolded proteins. Biochem. Soc. Trans. 41 (2013), 1598–1604, 10.1042/BST20130118.
-
(2013)
Biochem. Soc. Trans.
, vol.41
, pp. 1598-1604
-
-
Crippa, V.1
Galbiati, M.2
Boncoraglio, A.3
Rusmini, P.4
Onesto, E.5
Giorgetti, E.6
Cristofani, R.7
Zito, A.8
Poletti, A.9
-
33
-
-
33748801507
-
BAG3 deficiency results in fulminant myopathy and early lethality
-
[33] Homma, S., Iwasaki, M., Shelton, G.D., Engvall, E., Reed, J.C., Takayama, S., BAG3 deficiency results in fulminant myopathy and early lethality. Am. J. Pathol. 169 (2006), 761–773, 10.2353/ajpath.2006.060250.
-
(2006)
Am. J. Pathol.
, vol.169
, pp. 761-773
-
-
Homma, S.1
Iwasaki, M.2
Shelton, G.D.3
Engvall, E.4
Reed, J.C.5
Takayama, S.6
-
34
-
-
60849131479
-
Mutation in BAG3 causes severe dominant childhood muscular dystrophy
-
[34] Selcen, D., Muntoni, F., Burton, B.K., Pegoraro, E., Sewry, C., Bite, A., Engel, A.G., Mutation in BAG3 causes severe dominant childhood muscular dystrophy. Ann. Neurol. 65 (2009), 83–89, 10.1002/ana.21553.
-
(2009)
Ann. Neurol.
, vol.65
, pp. 83-89
-
-
Selcen, D.1
Muntoni, F.2
Burton, B.K.3
Pegoraro, E.4
Sewry, C.5
Bite, A.6
Engel, A.G.7
-
35
-
-
84927912558
-
BAG3 myofibrillar myopathy presenting with cardiomyopathy
-
[35] Konersman, C.G., Bordini, B.J., Scharer, G., Lawlor, M.W., Zangwill, S., Southern, J.F., Amos, L., Geddes, G.C., Kliegman, R., Collins, M.P., BAG3 myofibrillar myopathy presenting with cardiomyopathy. Neuromuscul. Disord. 25 (2015), 418–422, 10.1016/j.nmd.2015.01.009.
-
(2015)
Neuromuscul. Disord.
, vol.25
, pp. 418-422
-
-
Konersman, C.G.1
Bordini, B.J.2
Scharer, G.3
Lawlor, M.W.4
Zangwill, S.5
Southern, J.F.6
Amos, L.7
Geddes, G.C.8
Kliegman, R.9
Collins, M.P.10
-
36
-
-
81255197001
-
Dilated cardiomyopathy-associated BAG3 mutations impair Z-disc assembly and enhance sensitivity to apoptosis in cardiomyocytes
-
[36] Arimura, T., Ishikawa, T., Nunoda, S., Kawai, S., Kimura, A., Dilated cardiomyopathy-associated BAG3 mutations impair Z-disc assembly and enhance sensitivity to apoptosis in cardiomyocytes. Hum. Mutat. 32 (2011), 1481–1491, 10.1002/humu.21603.
-
(2011)
Hum. Mutat.
, vol.32
, pp. 1481-1491
-
-
Arimura, T.1
Ishikawa, T.2
Nunoda, S.3
Kawai, S.4
Kimura, A.5
-
37
-
-
84921936490
-
Zebrafish models of BAG3 myofibrillar myopathy suggest a toxic gain of function leading to BAG3 insufficiency
-
[37] Ruparelia, A.A., Oorschot, V., Vaz, R., Ramm, G., Bryson-Richardson, R.J., Zebrafish models of BAG3 myofibrillar myopathy suggest a toxic gain of function leading to BAG3 insufficiency. Acta Neuropathol. 128 (2014), 821–833, 10.1007/s00401-014-1344-5.
-
(2014)
Acta Neuropathol.
, vol.128
, pp. 821-833
-
-
Ruparelia, A.A.1
Oorschot, V.2
Vaz, R.3
Ramm, G.4
Bryson-Richardson, R.J.5
-
38
-
-
84921937545
-
Myofibrillar myopathies and the Z-disk associated proteins
-
[38] Ruparelia, A., Vaz, R., Bryson-Richardson, R., Myofibrillar myopathies and the Z-disk associated proteins. INTECH 3 (2012), 317–358, 10.5772/50110.
-
(2012)
INTECH
, vol.3
, pp. 317-358
-
-
Ruparelia, A.1
Vaz, R.2
Bryson-Richardson, R.3
-
39
-
-
35949000838
-
BAG3 regulates motility and adhesion of epithelial cancer cells
-
[39] Iwasaki, M., Homma, S., Hishiya, A., Dolezal, S.J., Reed, J.C., Takayama, S., BAG3 regulates motility and adhesion of epithelial cancer cells. Cancer Res. 67 (2007), 10252–10259, 10.1158/0008-5472.CAN-07-0618.
-
(2007)
Cancer Res.
, vol.67
, pp. 10252-10259
-
-
Iwasaki, M.1
Homma, S.2
Hishiya, A.3
Dolezal, S.J.4
Reed, J.C.5
Takayama, S.6
-
40
-
-
84943766934
-
Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle
-
[40] Ulbricht, A., Gehlert, S., Leciejewski, B., Schiffer, T., Bloch, W., Höhfeld, J., Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle. Autophagy 11 (2015), 538–546, 10.1080/15548627.2015.1017186.
-
(2015)
Autophagy
, vol.11
, pp. 538-546
-
-
Ulbricht, A.1
Gehlert, S.2
Leciejewski, B.3
Schiffer, T.4
Bloch, W.5
Höhfeld, J.6
-
41
-
-
79958284636
-
Role of YAP/TAZ in mechanotransduction
-
[41] Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Le Digabel, J., Forcato, M., Bicciato, S., Elvassore, N., Piccolo, S., Role of YAP/TAZ in mechanotransduction. Nature 474 (2011), 179–183, 10.1038/nature10137.
-
(2011)
Nature
, vol.474
, pp. 179-183
-
-
Dupont, S.1
Morsut, L.2
Aragona, M.3
Enzo, E.4
Giulitti, S.5
Cordenonsi, M.6
Zanconato, F.7
Le Digabel, J.8
Forcato, M.9
Bicciato, S.10
Elvassore, N.11
Piccolo, S.12
-
42
-
-
63949084607
-
SUnSET, a nonradioactive method to monitor protein synthesis
-
[42] Schmidt, E.K., Clavarino, G., Ceppi, M., Pierre, P., SUnSET, a nonradioactive method to monitor protein synthesis. Nat. Methods 6 (2009), 275–277, 10.1038/nmeth.1314.
-
(2009)
Nat. Methods
, vol.6
, pp. 275-277
-
-
Schmidt, E.K.1
Clavarino, G.2
Ceppi, M.3
Pierre, P.4
-
43
-
-
28644442088
-
BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP
-
[43] Arndt, V., Daniel, C., Nastainczyk, W., Alberti, S., Höhfeld, J., BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Mol. Biol. Cell 16 (2005), 5891–5900, 10.1091/mbc.E05-07-0660.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 5891-5900
-
-
Arndt, V.1
Daniel, C.2
Nastainczyk, W.3
Alberti, S.4
Höhfeld, J.5
-
44
-
-
84955462834
-
Breaking sarcomeres by in vitro exercise
-
[44] Orfanos, Z., Gödderz, M.P.O., Soroka, E., Gödderz, T., Rumyantseva, A., van der Ven, P.F.M., Hawke, T.J., Fürst, D.O., Breaking sarcomeres by in vitro exercise. Sci. Rep., 6, 2016, 19614, 10.1038/srep19614.
-
(2016)
Sci. Rep.
, vol.6
, pp. 19614
-
-
Orfanos, Z.1
Gödderz, M.P.O.2
Soroka, E.3
Gödderz, T.4
Rumyantseva, A.5
van der Ven, P.F.M.6
Hawke, T.J.7
Fürst, D.O.8
-
45
-
-
0035369262
-
Excitation–contraction coupling in skeletal muscle of a mouse lacking the dihydropyridine receptor subunit γ1
-
[45] Ursu, D., Sebille, S., Dietze, B., Freise, D., Flockerzi, V., Melzer, W., Excitation–contraction coupling in skeletal muscle of a mouse lacking the dihydropyridine receptor subunit γ1. J. Physiol. 533 (2001), 367–377, 10.1111/j.1469-7793.2001.0367a.x.
-
(2001)
J. Physiol.
, vol.533
, pp. 367-377
-
-
Ursu, D.1
Sebille, S.2
Dietze, B.3
Freise, D.4
Flockerzi, V.5
Melzer, W.6
-
46
-
-
84885154570
-
Bcl2-associated athanogene 3 interactome analysis reveals a new role in modulating proteasome activity
-
[46] Chen, Y., Yang, L.-N., Cheng, L., Tu, S., Guo, S.-J., Le, H.-Y., Xiong, Q., Mo, R., Li, C.-Y., Jeong, J.-S., Jiang, L., Blackshaw, S., Bi, L.-J., Zhu, H., Tao, S.-C., Ge, F., Bcl2-associated athanogene 3 interactome analysis reveals a new role in modulating proteasome activity. Mol. Cell. Proteomics 12 (2013), 2804–2819.
-
(2013)
Mol. Cell. Proteomics
, vol.12
, pp. 2804-2819
-
-
Chen, Y.1
Yang, L.-N.2
Cheng, L.3
Tu, S.4
Guo, S.-J.5
Le, H.-Y.6
Xiong, Q.7
Mo, R.8
Li, C.-Y.9
Jeong, J.-S.10
Jiang, L.11
Blackshaw, S.12
Bi, L.-J.13
Zhu, H.14
Tao, S.-C.15
Ge, F.16
-
47
-
-
84904547311
-
A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways
-
[47] Taipale, M., Tucker, G., Peng, J., Krykbaeva, I., Lin, Z.Y., Larsen, B., Choi, H., Berger, B., Gingras, A.C., Lindquist, S., A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell 158 (2014), 434–448, 10.1016/j.cell.2014.05.039.
-
(2014)
Cell
, vol.158
, pp. 434-448
-
-
Taipale, M.1
Tucker, G.2
Peng, J.3
Krykbaeva, I.4
Lin, Z.Y.5
Larsen, B.6
Choi, H.7
Berger, B.8
Gingras, A.C.9
Lindquist, S.10
-
48
-
-
77956940128
-
BAG3 directly associates with guanine nucleotide exchange factor of Rap1, PDZGEF2, and regulates cell adhesion
-
[48] Iwasaki, M., Tanaka, R., Hishiya, A., Homma, S., Reed, J.C., Takayama, S., BAG3 directly associates with guanine nucleotide exchange factor of Rap1, PDZGEF2, and regulates cell adhesion. Biochem. Biophys. Res. Commun. 400 (2010), 413–418, 10.1016/j.bbrc.2010.08.092.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.400
, pp. 413-418
-
-
Iwasaki, M.1
Tanaka, R.2
Hishiya, A.3
Homma, S.4
Reed, J.C.5
Takayama, S.6
-
49
-
-
84911419043
-
Force is a signal that cells cannot ignore
-
[49] Yusko, E.C., Asbury, C.L., Force is a signal that cells cannot ignore. Mol. Biol. Cell 25 (2014), 3717–3725, 10.1091/mbc.E13-12-0707.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 3717-3725
-
-
Yusko, E.C.1
Asbury, C.L.2
-
50
-
-
84878541453
-
Mechanosensitivity and compositional dynamics of cell-matrix adhesions
-
[50] Schiller, H.B., Fässler, R., Mechanosensitivity and compositional dynamics of cell-matrix adhesions. EMBO Rep. 14 (2013), 509–519, 10.1038/embor.2013.49.
-
(2013)
EMBO Rep.
, vol.14
, pp. 509-519
-
-
Schiller, H.B.1
Fässler, R.2
-
51
-
-
84963600077
-
Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity
-
[51] Elosegui-Artola, A., Oria, R., Chen, Y., Kosmalska, A., Pérez-González, C., Castro, N., Zhu, C., Trepat, X., Roca-Cusachs, P., Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18 (2016), 540–548, 10.1038/ncb3336.
-
(2016)
Nat. Cell Biol.
, vol.18
, pp. 540-548
-
-
Elosegui-Artola, A.1
Oria, R.2
Chen, Y.3
Kosmalska, A.4
Pérez-González, C.5
Castro, N.6
Zhu, C.7
Trepat, X.8
Roca-Cusachs, P.9
-
52
-
-
0038141979
-
Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins
-
[52] Zhang, Y., Gao, X., Saucedo, L.J., Ru, B., Edgar, B.A., Pan, D., Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 5 (2003), 578–581, 10.1038/ncb999.
-
(2003)
Nat. Cell Biol.
, vol.5
, pp. 578-581
-
-
Zhang, Y.1
Gao, X.2
Saucedo, L.J.3
Ru, B.4
Edgar, B.A.5
Pan, D.6
-
53
-
-
33745150462
-
Ribosomal protein S6 phosphorylation: from protein synthesis to cell size
-
[53] Ruvinsky, I., Meyuhas, O., Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem. Sci. 31 (2006), 342–348, 10.1016/j.tibs.2006.04.003.
-
(2006)
Trends Biochem. Sci.
, vol.31
, pp. 342-348
-
-
Ruvinsky, I.1
Meyuhas, O.2
-
54
-
-
84874040052
-
Dual specificity kinase DYRK3 couples stress granule condensation/ dissolution to mTORC1 signaling
-
[54] Wippich, F., Bodenmiller, B., Trajkovska, M.G., Wanka, S., Aebersold, R., Pelkmans, L., Dual specificity kinase DYRK3 couples stress granule condensation/ dissolution to mTORC1 signaling. Cell 152 (2013), 791–805, 10.1016/j.cell.2013.01.033.
-
(2013)
Cell
, vol.152
, pp. 791-805
-
-
Wippich, F.1
Bodenmiller, B.2
Trajkovska, M.G.3
Wanka, S.4
Aebersold, R.5
Pelkmans, L.6
-
55
-
-
0037372168
-
WW domain sequence activity relationships identified using ligand recognition propensities of 42 WW domains
-
[55] Otte, L., Wiedemann, U., Schlegel, B., Pires, J.R., Beyermann, M., Schmieder, P., Krause, G., Volkmer-Engert, R., Schneider-Mergener, J., Oschkinat, H., WW domain sequence activity relationships identified using ligand recognition propensities of 42 WW domains. Protein Sci. 12 (2003), 491–500, 10.1110/ps.0233203.lytic.
-
(2003)
Protein Sci.
, vol.12
, pp. 491-500
-
-
Otte, L.1
Wiedemann, U.2
Schlegel, B.3
Pires, J.R.4
Beyermann, M.5
Schmieder, P.6
Krause, G.7
Volkmer-Engert, R.8
Schneider-Mergener, J.9
Oschkinat, H.10
-
56
-
-
53149103943
-
Regulation of Nedd4-2 self-ubiquitination and stability by a PY motif located within its HECT-domain
-
[56] Bruce, M.C., Kanelis, V., Fouladkou, F., Debonneville, A., Staub, O., Rotin, D., Regulation of Nedd4-2 self-ubiquitination and stability by a PY motif located within its HECT-domain. Biochem. J. 415 (2008), 155–163, 10.1042/BJ20071708.
-
(2008)
Biochem. J.
, vol.415
, pp. 155-163
-
-
Bruce, M.C.1
Kanelis, V.2
Fouladkou, F.3
Debonneville, A.4
Staub, O.5
Rotin, D.6
-
57
-
-
78049290801
-
Modularity in the hippo signaling pathway
-
[57] Sudol, M., Harvey, K.F., Modularity in the hippo signaling pathway. Trends Biochem. Sci. 35 (2010), 627–633, 10.1016/j.tibs.2010.05.010.
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 627-633
-
-
Sudol, M.1
Harvey, K.F.2
-
58
-
-
84919754881
-
WW domain of BAG3 is required for the induction of autophagy in Glioma cells
-
[58] Merabova, N., Sariyer, I.K., Saribas, A.S., Knezevic, T., Gordon, J., Turco, M.C., Rosati, A., Weaver, M., Landry, J., Khalili, K., WW domain of BAG3 is required for the induction of autophagy in Glioma cells. J. Cell. Physiol. 230 (2015), 831–841, 10.1002/jcp.24811.
-
(2015)
J. Cell. Physiol.
, vol.230
, pp. 831-841
-
-
Merabova, N.1
Sariyer, I.K.2
Saribas, A.S.3
Knezevic, T.4
Gordon, J.5
Turco, M.C.6
Rosati, A.7
Weaver, M.8
Landry, J.9
Khalili, K.10
-
59
-
-
0035899897
-
Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling
-
[59] Demand, J., Alberti, S., Patterson, C., Höhfeld, J., Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr. Biol. 11 (2001), 1569–1577, 10.1016/S0960-9822(01)00487-0.
-
(2001)
Curr. Biol.
, vol.11
, pp. 1569-1577
-
-
Demand, J.1
Alberti, S.2
Patterson, C.3
Höhfeld, J.4
-
60
-
-
84881648155
-
The E3 ubiquitin ligase CHIP and the molecular chaperone Hsc70 form a dynamic, tethered complex
-
[60] Smith, M.C., Scaglione, K.M., Assimon, V.A., Patury, S., Thompson, A.D., Dickey, C.A., Southworth, D.R., Paulson, H.L., Gestwicki, J.E., Zuiderweg, E.R.P., The E3 ubiquitin ligase CHIP and the molecular chaperone Hsc70 form a dynamic, tethered complex. Biochemistry 52 (2013), 5354–5364, 10.1021/bi4009209.
-
(2013)
Biochemistry
, vol.52
, pp. 5354-5364
-
-
Smith, M.C.1
Scaglione, K.M.2
Assimon, V.A.3
Patury, S.4
Thompson, A.D.5
Dickey, C.A.6
Southworth, D.R.7
Paulson, H.L.8
Gestwicki, J.E.9
Zuiderweg, E.R.P.10
-
61
-
-
77949371541
-
Insights into the conformational dynamics of the E3 ubiquitin ligase CHIP in complex with chaperones and E2 enzymes
-
[61] Graf, C., Stankiewicz, M., Nikolay, R., Mayer, M.P., Insights into the conformational dynamics of the E3 ubiquitin ligase CHIP in complex with chaperones and E2 enzymes. Biochemistry 49 (2010), 2121–2129, 10.1021/bi901829f.
-
(2010)
Biochemistry
, vol.49
, pp. 2121-2129
-
-
Graf, C.1
Stankiewicz, M.2
Nikolay, R.3
Mayer, M.P.4
-
62
-
-
84863356189
-
The chaperone-like activity of rat HspB8/Hsp22 and dynamic molecular transition related to oligomeric architectures in vitro
-
[62] Yang, Z., Lu, Y., Liu, J., Wang, Y., Zhao, X., The chaperone-like activity of rat HspB8/Hsp22 and dynamic molecular transition related to oligomeric architectures in vitro. Protein Pept. Lett. 19 (2012), 353–359.
-
(2012)
Protein Pept. Lett.
, vol.19
, pp. 353-359
-
-
Yang, Z.1
Lu, Y.2
Liu, J.3
Wang, Y.4
Zhao, X.5
-
63
-
-
0035900793
-
CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation
-
[63] Jiang, J., Ballinger, C.A., Wu, Y., Dai, Q., Cyr, D.M., Höhfeld, J., Patterson, C., CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J. Biol. Chem. 276 (2001), 42938–42944, 10.1074/jbc.M101968200.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 42938-42944
-
-
Jiang, J.1
Ballinger, C.A.2
Wu, Y.3
Dai, Q.4
Cyr, D.M.5
Höhfeld, J.6
Patterson, C.7
-
64
-
-
78651282673
-
p62 targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding
-
[64] Itakura, E., Mizushima, N., p62 targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J. Cell Biol. 192 (2011), 17–27, 10.1083/jcb.201009067.
-
(2011)
J. Cell Biol.
, vol.192
, pp. 17-27
-
-
Itakura, E.1
Mizushima, N.2
-
65
-
-
84933679024
-
The selective autophagy receptor p62 forms a flexible filamentous helical scaffold
-
[65] Ciuffa, R., Lamark, T., Tarafder, A.K., Guesdon, A., Rybina, S., Hagen, W.J.H., Johansen, T., Sachse, C., The selective autophagy receptor p62 forms a flexible filamentous helical scaffold. Cell Rep. 11 (2015), 748–758, 10.1016/j.celrep.2015.03.062.
-
(2015)
Cell Rep.
, vol.11
, pp. 748-758
-
-
Ciuffa, R.1
Lamark, T.2
Tarafder, A.K.3
Guesdon, A.4
Rybina, S.5
Hagen, W.J.H.6
Johansen, T.7
Sachse, C.8
-
66
-
-
79960925868
-
Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle
-
[66] Hornberger, T.A., Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle. Int. J. Biochem. Cell Biol. 43 (2011), 1267–1276, 10.1016/j.biocel.2011.05.007.
-
(2011)
Int. J. Biochem. Cell Biol.
, vol.43
, pp. 1267-1276
-
-
Hornberger, T.A.1
-
67
-
-
84939883501
-
High force development augments skeletal muscle signalling in resistance exercise modes equalized for time under tension
-
[67] Gehlert, S., Suhr, F., Gutsche, K., Willkomm, L., Kern, J., Jacko, D., Knicker, A., Schiffer, T., Wackerhage, H., Bloch, W., High force development augments skeletal muscle signalling in resistance exercise modes equalized for time under tension. Pflugers Arch. 467 (2015), 1343–1356, 10.1007/s00424-014-1579-y.
-
(2015)
Pflugers Arch.
, vol.467
, pp. 1343-1356
-
-
Gehlert, S.1
Suhr, F.2
Gutsche, K.3
Willkomm, L.4
Kern, J.5
Jacko, D.6
Knicker, A.7
Schiffer, T.8
Wackerhage, H.9
Bloch, W.10
-
68
-
-
84882733761
-
Mechanisms regulating skeletal muscle growth and atrophy
-
[68] Schiaffino, S., Dyar, K.A., Ciciliot, S., Blaauw, B., Sandri, M., Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 280 (2013), 4294–4314, 10.1111/febs.12253.
-
(2013)
FEBS J.
, vol.280
, pp. 4294-4314
-
-
Schiaffino, S.1
Dyar, K.A.2
Ciciliot, S.3
Blaauw, B.4
Sandri, M.5
-
69
-
-
84981187622
-
The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise
-
[69] Ogasawara, R., Fujita, S., Hornberger, T.A., Kitaoka, Y., Makanae, Y., Nakazato, K., Naokata, I., The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci. Rep., 6, 2016, 31142, 10.1038/srep31142.
-
(2016)
Sci. Rep.
, vol.6
, pp. 31142
-
-
Ogasawara, R.1
Fujita, S.2
Hornberger, T.A.3
Kitaoka, Y.4
Makanae, Y.5
Nakazato, K.6
Naokata, I.7
-
70
-
-
84899709626
-
The role of mTORC1 in regulating protein synthesis and skeletal muscle mass in response to various mechanical stimuli
-
[70] Goodman, C.A., The role of mTORC1 in regulating protein synthesis and skeletal muscle mass in response to various mechanical stimuli. Rev. Physiol. Biochem. Pharmacol. 166 (2014), 43–95, 10.1007/112_2013_17.
-
(2014)
Rev. Physiol. Biochem. Pharmacol.
, vol.166
, pp. 43-95
-
-
Goodman, C.A.1
-
71
-
-
84893142272
-
Signaling pathways controlling skeletal muscle mass
-
[71] Egerman, M.A., Glass, D.J., Signaling pathways controlling skeletal muscle mass. Crit. Rev. Biochem. Mol. Biol. 49 (2014), 59–68, 10.3109/10409238.2013.857291.
-
(2014)
Crit. Rev. Biochem. Mol. Biol.
, vol.49
, pp. 59-68
-
-
Egerman, M.A.1
Glass, D.J.2
-
72
-
-
84899471750
-
The mechanical activation of mTOR signaling: an emerging role for late endosome/lysosomal targeting
-
[72] Jacobs, B.L., Goodman, C.A., Hornberger, T.A., The mechanical activation of mTOR signaling: an emerging role for late endosome/lysosomal targeting. J. Muscle Res. Cell Motil. 35 (2014), 11–21, 10.1007/s10974-013-9367-4.
-
(2014)
J. Muscle Res. Cell Motil.
, vol.35
, pp. 11-21
-
-
Jacobs, B.L.1
Goodman, C.A.2
Hornberger, T.A.3
|