메뉴 건너뛰기




Volumn 8, Issue 1, 2016, Pages

Production of a dynamic cropland mask by processing remote sensing image series at high temporal and spatial resolutions

Author keywords

Cropland mapping; Dynamic classification; Random forests; Satellite image time series; Sentinel 2

Indexed keywords

CULTIVATION; DECISION TREES; PATTERN RECOGNITION; REMOTE SENSING; SATELLITE IMAGERY; TIME SERIES;

EID: 84957869508     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs8010055     Document Type: Article
Times cited : (118)

References (63)
  • 1
    • 80051915406 scopus 로고    scopus 로고
    • Global Croplands and their Importance for Water and Food Security in the Twenty-first Century: Towards an Ever Green Revolution that Combines a Second Green Revolution with a Blue Revolution
    • Thenkabail, P.S. Global Croplands and their Importance for Water and Food Security in the Twenty-first Century: Towards an Ever Green Revolution that Combines a Second Green Revolution with a Blue Revolution. Remote Sens. 2010, 2, 2305-2312.
    • (2010) Remote Sens. , vol.2 , pp. 2305-2312
    • Thenkabail, P.S.1
  • 3
    • 84922252429 scopus 로고    scopus 로고
    • Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations
    • Whitcraft, A.K.; Vermote, E.F.; Becker-Reshef, I.; Justice, C.O. Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations. Remote Sens. Environ. 2015, 156, 438-447.
    • (2015) Remote Sens. Environ. , vol.156 , pp. 438-447
    • Whitcraft, A.K.1    Vermote, E.F.2    Becker-Reshef, I.3    Justice, C.O.4
  • 5
    • 77956179220 scopus 로고    scopus 로고
    • A conceptual framework to define the spatial resolution requirements for agricultural monitoring using remote sensing
    • Duveiller, G.; Defourny, P. A conceptual framework to define the spatial resolution requirements for agricultural monitoring using remote sensing. Remote Sens. Environ. 2010, 114, 2637-2650.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 2637-2650
    • Duveiller, G.1    Defourny, P.2
  • 6
    • 84924179871 scopus 로고    scopus 로고
    • Agricultural growing season calendars derived from MODIS surface reflectance
    • Whitcraft, A.K.; Becker-Reshef, I.; Justice, C.O. Agricultural growing season calendars derived from MODIS surface reflectance. Int. J. Digit. Earth 2014, DOI:10.1080/17538947.2014.894147.
    • (2014) Int. J. Digit. Earth
    • Whitcraft, A.K.1    Becker-Reshef, I.2    Justice, C.O.3
  • 8
    • 20944440113 scopus 로고    scopus 로고
    • GLC2000: A new approach to global land cover mapping from Earth Observation data
    • Bartholomé, E.M; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth Observation data. Int. J. Remote Sens. 2005, 26, 1959-1977.
    • (2005) Int. J. Remote Sens. , vol.26 , pp. 1959-1977
    • Bartholomé, E.M.1    Belward, A.S.2
  • 17
    • 77954168912 scopus 로고    scopus 로고
    • MIRCA2000-Global Monthly Irrigated and Rainfed Crop Areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling
    • Portmann, F.T.; Siebert, S.; Döll, P. MIRCA2000-Global Monthly Irrigated and Rainfed Crop Areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 2010, doi:10.1029/2008GB003435.
    • (2010) Glob. Biogeochem. Cycles
    • Portmann, F.T.1    Siebert, S.2    Döll, P.3
  • 19
    • 84874788283 scopus 로고    scopus 로고
    • Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs
    • Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sens. 2013, 5, 949-981.
    • (2013) Remote Sens. , vol.5 , pp. 949-981
    • Atzberger, C.1
  • 20
    • 84957883496 scopus 로고    scopus 로고
    • Food and Agriculture Organization (FAO). Available online, accessed on 18 December
    • Global Information and Early Warning System (GIEWS) on Food and Agriculture. Food and Agriculture Organization (FAO). Available online: http://www.fao.org/giews/english/index.htm (accessed on 18 December 2015).
    • (2015) Global Information and Early Warning System (GIEWS) on Food and Agriculture
  • 21
    • 85035103345 scopus 로고    scopus 로고
    • Available online, accessed on 31 May
    • United States Department of Agriculture (USDA). Foreign Agricultural Service (FAS). Available online:http://www.fas.usda.gov (accessed on 31 May 2015).
    • (2015) Foreign Agricultural Service (FAS)
  • 25
    • 84860412766 scopus 로고    scopus 로고
    • NASA's contribution to the Group on Earth Observations (GEO) Global Agricultural Monitoring System of Systems
    • Becker-Reshef, I.; Justice, C.; Doorn, B.; Reynolds, C.; Anyamba, A.; Tucker, C.J.; Korontzi, S. NASA's contribution to the Group on Earth Observations (GEO) Global Agricultural Monitoring System of Systems. NASA Earth Obs. 2009, 21, 24-29.
    • (2009) NASA Earth Obs. , vol.21 , pp. 24-29
    • Becker-Reshef, I.1    Justice, C.2    Doorn, B.3    Reynolds, C.4    Anyamba, A.5    Tucker, C.J.6    Korontzi, S.7
  • 26
    • 34247523027 scopus 로고    scopus 로고
    • Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains
    • Wardlow, B.; Egbert, S.; Kastens, J. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens. Environ. 2007, 108, 290-310.
    • (2007) Remote Sens. Environ. , vol.108 , pp. 290-310
    • Wardlow, B.1    Egbert, S.2    Kastens, J.3
  • 27
    • 76249131406 scopus 로고    scopus 로고
    • Mapping cropland and major crop types across the Great Lakes Basin using MODIS-NDVI data
    • Shao, Y.; Lunetta, R.; Ediriwickrema, J.; Liames, J. Mapping cropland and major crop types across the Great Lakes Basin using MODIS-NDVI data. Photogramm. Eng. Remote Sens. 2010, 75 73-84.
    • (2010) Photogramm. Eng. Remote Sens. , vol.75 , pp. 73-84
    • Shao, Y.1    Lunetta, R.2    Ediriwickrema, J.3    Liames, J.4
  • 28
    • 39749173163 scopus 로고    scopus 로고
    • Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains
    • Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sens. Environ. 2008, 112, 1096-1116.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 1096-1116
    • Wardlow, B.D.1    Egbert, S.L.2
  • 29
    • 84907466218 scopus 로고    scopus 로고
    • Defining the spatial resolution requirements for crop identification using optical remote sensing
    • Löw, F.; Duveiller, G. Defining the spatial resolution requirements for crop identification using optical remote sensing. Remote Sens. 2014, 6, 9034-9063.
    • (2014) Remote Sens. , vol.6 , pp. 9034-9063
    • Löw, F.1    Duveiller, G.2
  • 30
    • 84907478462 scopus 로고    scopus 로고
    • How Reliable is the MODIS Land Cover Product for Crop Mapping Sub-Saharan Agricultural Landscapes
    • Leroux, L.; Jolivot, A.; Bégué, A.; Seen, D.L.; Zoungrana, B. How Reliable is the MODIS Land Cover Product for Crop Mapping Sub-Saharan Agricultural Landscapes. Remote Sens. 2014, 6, 8541-8564.
    • (2014) Remote Sens. , vol.6 , pp. 8541-8564
    • Leroux, L.1    Jolivot, A.2    Bégué, A.3    Seen, D.L.4    Zoungrana, B.5
  • 31
  • 32
    • 84957919522 scopus 로고    scopus 로고
    • Available online, accessed on 18 December
    • Global Cropland Area Database at 30 m Resolution (GCAD30). Available online: https://earthdata.nasa. gov/our-community/community-data-system-programs/measures-projects/global-cropland-area-database (accessed on 18 December 2015).
    • (2015) Global Cropland Area Database at 30 m Resolution (GCAD30)
  • 33
    • 84957919523 scopus 로고    scopus 로고
    • Building a data set over 12 globally distributed sites to support the development of agriculture monitoring applications with Sentinel-2
    • Bontemps, S.; Arias M.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.; Matton, N.; Morin, D.; Popescu, R.; et al. Building a data set over 12 globally distributed sites to support the development of agriculture monitoring applications with Sentinel-2. Remote Sens. 2015, 7, 16062-16090, doi:10.3390/rs71215815.
    • (2015) Remote Sens. , vol.7 , pp. 16062-16090
    • Bontemps, S.1    Arias, M.2    Cara, C.3    Dedieu, G.4    Guzzonato, E.5    Hagolle, O.6    Inglada, J.7    Matton, N.8    Morin, D.9    Popescu, R.10
  • 35
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. Random Forests. Mach. Learn. 2001, 40, 5-32.
    • (2001) Mach. Learn. , vol.40 , pp. 5-32
    • Breiman, L.1
  • 36
    • 84945907812 scopus 로고    scopus 로고
    • An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series
    • Matton, N.; Sepulcre Canto, G.; Waldner, F.; Valero, S.; Morin, D.; Inglada, J.; Arias, M.; Bontemps, S.; Koetz, B.; Defourny, P. An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series. Remote Sens. 2015, 7, 13208-13232.
    • (2015) Remote Sens. , vol.7 , pp. 13208-13232
    • Matton, N.1    Sepulcre Canto, G.2    Waldner, F.3    Valero, S.4    Morin, D.5    Inglada, J.6    Arias, M.7    Bontemps, S.8    Koetz, B.9    Defourny, P.10
  • 38
    • 0030429663 scopus 로고    scopus 로고
    • NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space
    • Gao, B.-C. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257-266.
    • (1996) Remote Sens. Environ. , vol.58 , pp. 257-266
    • Gao, B.-C.1
  • 39
    • 2242426277 scopus 로고    scopus 로고
    • Crop identification using harmonic analysis of time-series AVHRR NDVI data
    • Jakubauskas, M.E.; Legates, D.R.; Kastens, J.H. Crop identification using harmonic analysis of time-series AVHRR NDVI data. Comput. Electr. Agric. 2002, 37, 127-139.
    • (2002) Comput. Electr. Agric. , vol.37 , pp. 127-139
    • Jakubauskas, M.E.1    Legates, D.R.2    Kastens, J.H.3
  • 41
    • 0036699946 scopus 로고    scopus 로고
    • Seasonality extraction by function fitting to time-series of satellite sensor data
    • Jonsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824-1832.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , pp. 1824-1832
    • Jonsson, P.1    Eklundh, L.2
  • 43
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123-140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 46
    • 84883510217 scopus 로고    scopus 로고
    • Object-oriented crop classification using multitemporal ETM+ SLC-off imagery and random forest
    • Long, J.A.; Lawrence, R.L.; Greenwood, M.C.; Marshall, L.; Miller, P.R. Object-oriented crop classification using multitemporal ETM+ SLC-off imagery and random forest. GISci. Remote Sens. 2013, 50, 418-436.
    • (2013) GISci. Remote Sens. , vol.50 , pp. 418-436
    • Long, J.A.1    Lawrence, R.L.2    Greenwood, M.C.3    Marshall, L.4    Miller, P.R.5
  • 48
    • 84939430348 scopus 로고    scopus 로고
    • Mapping Woodland Cover in the Miombo Ecosystem: A Comparison of Machine Learning Classifiers
    • Kamusoko, C.; Gamba, J.; Murakami, H. Mapping Woodland Cover in the Miombo Ecosystem: A Comparison of Machine Learning Classifiers. Land 2014, 3, 524-540.
    • (2014) Land , vol.3 , pp. 524-540
    • Kamusoko, C.1    Gamba, J.2    Murakami, H.3
  • 49
    • 0030208741 scopus 로고    scopus 로고
    • Classification of Mediterranean crops with multisensor data: Per-pixel versus per-object statistics and image segmentation
    • Lobo, A.; Chic, O.; Casterad, A. Classification of Mediterranean crops with multisensor data: Per-pixel versus per-object statistics and image segmentation. Int. J. Remote Sens.1996, 17, 2385-2400.
    • (1996) Int. J. Remote Sens. , vol.17 , pp. 2385-2400
    • Lobo, A.1    Chic, O.2    Casterad, A.3
  • 50
    • 73249139477 scopus 로고    scopus 로고
    • Object based image analysis for remote sensing
    • Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogrmm. Remote Sens. 2010. 65, 2-16.
    • (2010) ISPRS J. Photogrmm. Remote Sens. , vol.65 , pp. 2-16
    • Blaschke, T.1
  • 51
    • 67651084257 scopus 로고    scopus 로고
    • Object-based image analysis: Strengths, weakness, opportunities and threats
    • Hay, G.; Castilla, G. Object-based image analysis: Strengths, weakness, opportunities and threats. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, XXXVI-part 6 4-5.
    • (2006) Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. , vol.36 , pp. 4-5
    • Hay, G.1    Castilla, G.2
  • 52
    • 79960676967 scopus 로고    scopus 로고
    • A Comparison of the Performance of Pixel Based and Object Based Classifications over Images with Various Spatial Resolutions
    • Gao, Y.; Mas, J.F. A Comparison of the Performance of Pixel Based and Object Based Classifications over Images with Various Spatial Resolutions. Online J. Earth Sci. 2008, 2, 27-35.
    • (2008) Online J. Earth Sci. , vol.2 , pp. 27-35
    • Gao, Y.1    Mas, J.F.2
  • 53
    • 49449103785 scopus 로고    scopus 로고
    • Classification of the wildland-urban interface: A comparison of pixel- and object-based classifications using high-resolution aerial photography
    • Cleve, C.; Kelly, M.; Kearns, F.R.; Moritz, M. Classification of the wildland-urban interface: A comparison of pixel- and object-based classifications using high-resolution aerial photography. Comput. Environ. Urban Syst. 2008, 32, 317-326.
    • (2008) Comput. Environ. Urban Syst. , vol.32 , pp. 317-326
    • Cleve, C.1    Kelly, M.2    Kearns, F.R.3    Moritz, M.4
  • 54
    • 79953182966 scopus 로고    scopus 로고
    • Object based crop identification using multiple vegetation indices, textural features and crop phenology
    • Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301-1316.
    • (2011) Remote Sens. Environ. , vol.115 , pp. 1301-1316
    • Peña-Barragán, J.M.1    Ngugi, M.K.2    Plant, R.E.3    Six, J.4
  • 55
    • 6344256799 scopus 로고    scopus 로고
    • Efficiency and accuracy of per-field classification for operational crop mapping
    • De Wit, A.J.W.; Clevers, J. Efficiency and accuracy of per-field classification for operational crop mapping. Int. J. Remote Sens. 2004, 25, 4091-4112.
    • (2004) Int. J. Remote Sens. , vol.25 , pp. 4091-4112
    • De Wit, A.J.W.1    Clevers, J.2
  • 56
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson, K. On lines and planes of closest fit to systems of points in space. Phil. Mag. 1901, 2, 559-572.
    • (1901) Phil. Mag. , vol.2 , pp. 559-572
    • Pearson, K.1
  • 57
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • Comaniciu, D. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603-619.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , pp. 603-619
    • Comaniciu, D.1
  • 59
    • 77956882349 scopus 로고    scopus 로고
    • Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr-Temporal segmentation algorithms
    • Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr-Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897-2910.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 2897-2910
    • Kennedy, R.E.1    Yang, Z.2    Cohen, W.B.3
  • 60
    • 0027607668 scopus 로고
    • Long sequence time series evaluation using standardized principal components
    • Eastman, J.R.; Fulk, M. Long sequence time series evaluation using standardized principal components. Photogram. Eng. Remote Sens. 1993, 59, 1307-1312.
    • (1993) Photogram. Eng. Remote Sens. , vol.59 , pp. 1307-1312
    • Eastman, J.R.1    Fulk, M.2
  • 61
    • 84864067444 scopus 로고    scopus 로고
    • Spatio-temporal reasoning for the classification of satellite image time series
    • Petitjean, F.; Kurtz, C.; Passat, N.; Gançarski, P. Spatio-temporal reasoning for the classification of satellite image time series. Pattern Recognit. Lett. 2012, 33, 1805-1815.
    • (2012) Pattern Recognit. Lett. , vol.33 , pp. 1805-1815
    • Petitjean, F.1    Kurtz, C.2    Passat, N.3    Gançarski, P.4
  • 62
    • 65649138430 scopus 로고    scopus 로고
    • A systematic analysis of performance measures for classification tasks
    • Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427-437.
    • (2009) Inf. Process. Manag. , vol.45 , pp. 427-437
    • Sokolova, M.1    Lapalme, G.2
  • 63
    • 84937275232 scopus 로고    scopus 로고
    • Assessing agreement on classification tasks: The kappa statistic
    • Carletta, J. Assessing agreement on classification tasks: The kappa statistic. Comput. Linguist. 1996, 22, 249-254.
    • (1996) Comput. Linguist. , vol.22 , pp. 249-254
    • Carletta, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.