메뉴 건너뛰기




Volumn 115, Issue , 2015, Pages 171-179

Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data

Author keywords

Crop classification; Enhanced vegetation index; Landsat 7 ETM+; Random forest; Upland field

Indexed keywords

CROPS; DECISION TREES; FORESTRY; FRUITS; IMAGE RESOLUTION; INFORMATION DISSEMINATION; LAND USE; MAPPING; OPEN SOURCE SOFTWARE; OPEN SYSTEMS; SOFTWARE ENGINEERING; TIME SERIES; VEGETATION;

EID: 84931270718     PISSN: 01681699     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compag.2015.05.001     Document Type: Article
Times cited : (215)

References (54)
  • 2
    • 0036099294 scopus 로고    scopus 로고
    • Remote sensing of selective logging in Amazonia Assessing limitations based on detailed field observations, Landsat ETM+, and textural analysis
    • Asner G.P., Keller M., Pereira R., Zweede J.C. Remote sensing of selective logging in Amazonia Assessing limitations based on detailed field observations, Landsat ETM+, and textural analysis. Remote Sens. Environ. 2002, 80(3):483-496.
    • (2002) Remote Sens. Environ. , vol.80 , Issue.3 , pp. 483-496
    • Asner, G.P.1    Keller, M.2    Pereira, R.3    Zweede, J.C.4
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45(1):5-32.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 4
    • 84973587732 scopus 로고
    • A coefficient of agreement for nominal scales
    • Cohen J. A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 1960, 20(1):37-46.
    • (1960) Educ. Psychol. Measur. , vol.20 , Issue.1 , pp. 37-46
    • Cohen, J.1
  • 5
    • 84888067055 scopus 로고    scopus 로고
    • Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information
    • Cracknell M.J., Reading A.M. Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 2014, 63:22-33.
    • (2014) Comput. Geosci. , vol.63 , pp. 22-33
    • Cracknell, M.J.1    Reading, A.M.2
  • 7
    • 0028995939 scopus 로고
    • Global discrimination of land cover from metrices derived from AVHRR data sets
    • deFries R., Hansen M., Townshend J. Global discrimination of land cover from metrices derived from AVHRR data sets. Remote Sens. Environ. 1995, 54(3):209-222.
    • (1995) Remote Sens. Environ. , vol.54 , Issue.3 , pp. 209-222
    • deFries, R.1    Hansen, M.2    Townshend, J.3
  • 8
    • 0034653271 scopus 로고    scopus 로고
    • Incorporation of digital elevation models with Landsat-TM data to improve land cover classification accuracy
    • Fahsi A., Tsegaye T., Tadesse W., Coleman T. Incorporation of digital elevation models with Landsat-TM data to improve land cover classification accuracy. For. Ecol. Manage. 2000, 128:57-64.
    • (2000) For. Ecol. Manage. , vol.128 , pp. 57-64
    • Fahsi, A.1    Tsegaye, T.2    Tadesse, W.3    Coleman, T.4
  • 9
    • 3242759024 scopus 로고    scopus 로고
    • Supervised image classification by MLP and RBF neural networks with and without an exhaustively defined set of classes
    • Foody G.M. Supervised image classification by MLP and RBF neural networks with and without an exhaustively defined set of classes. Int. J. Remote Sens. 2004, 25(15):3091-3104.
    • (2004) Int. J. Remote Sens. , vol.25 , Issue.15 , pp. 3091-3104
    • Foody, G.M.1
  • 10
    • 0029478629 scopus 로고
    • Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients
    • Franklin J. Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog. Phys. Geogr. 1995, 19(4):474-499.
    • (1995) Prog. Phys. Geogr. , vol.19 , Issue.4 , pp. 474-499
    • Franklin, J.1
  • 11
    • 79955448374 scopus 로고    scopus 로고
    • Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic
    • Ghimire B., Rogan J., Miller J. Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sens. Lett. 2010, 1(1):45-54.
    • (2010) Remote Sens. Lett. , vol.1 , Issue.1 , pp. 45-54
    • Ghimire, B.1    Rogan, J.2    Miller, J.3
  • 13
    • 84931287139 scopus 로고    scopus 로고
    • Geographic Resources Analysis Support System (GRASS) Software; Version 6.4; Open Source Geospatial Foundation Project; 2012. <> (accessed 30.11.2013).
    • GRASS Development Team. Geographic Resources Analysis Support System (GRASS) Software; Version 6.4; Open Source Geospatial Foundation Project; 2012. <> (accessed 30.11.2013). http://grass.osgeo.org/.
  • 14
  • 15
    • 78650731656 scopus 로고    scopus 로고
    • Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests
    • Guo L., Chehata N., Mallet C., Boukir S. Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests. ISPRS J. Photogramm. Remote Sens. 2011, 66(1):56-66.
    • (2011) ISPRS J. Photogramm. Remote Sens. , vol.66 , Issue.1 , pp. 56-66
    • Guo, L.1    Chehata, N.2    Mallet, C.3    Boukir, S.4
  • 17
    • 0036846393 scopus 로고    scopus 로고
    • Overview of the radiometric and biophysical performance of the MODIS vegetation indices
    • Huete A., Didan K., Miura T., Rodriguez E.P., Gao X., Ferreira L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83(1-2):195-213.
    • (2002) Remote Sens. Environ. , vol.83 , Issue.1-2 , pp. 195-213
    • Huete, A.1    Didan, K.2    Miura, T.3    Rodriguez, E.P.4    Gao, X.5    Ferreira, L.G.6
  • 18
    • 0033685007 scopus 로고    scopus 로고
    • Landsat 7 Automatic Cloud Cover Assessment
    • In Shen, S.S., Descour, M.R. (Eds.): Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI
    • Irish, R.R., 2000. Landsat 7 Automatic Cloud Cover Assessment. In Shen, S.S., Descour, M.R. (Eds.): Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, Proceedings of SPIE, 4049, pp. 348-355.
    • (2000) Proceedings of SPIE, 4049 , pp. 348-355
    • Irish, R.R.1
  • 19
    • 33750017829 scopus 로고    scopus 로고
    • Characterization of the Landsat-7 ETM+ Automated Cloud-Cover Assessment (ACCA) Algorithm
    • Irish R.R., Barker J.L., Goward S.N., Arvidson T. Characterization of the Landsat-7 ETM+ Automated Cloud-Cover Assessment (ACCA) Algorithm. Photogramm. Eng. Remote Sens. 2006, 72(10):1179-1188.
    • (2006) Photogramm. Eng. Remote Sens. , vol.72 , Issue.10 , pp. 1179-1188
    • Irish, R.R.1    Barker, J.L.2    Goward, S.N.3    Arvidson, T.4
  • 20
    • 2242426277 scopus 로고    scopus 로고
    • Crop identification using harmonic analysis of time-series AVHRR NDVI data
    • Jakubauskas M.E., Legates D.R., Kastens J.H. Crop identification using harmonic analysis of time-series AVHRR NDVI data. Comput. Electron. Agr. 2002, 37(1-3):127-139.
    • (2002) Comput. Electron. Agr. , vol.37 , Issue.1-3 , pp. 127-139
    • Jakubauskas, M.E.1    Legates, D.R.2    Kastens, J.H.3
  • 21
    • 0038181102 scopus 로고    scopus 로고
    • A non-parametric, supervised classification of vegetation types on the Kaibab National Forest using decision trees
    • Joy S.M., Reich R.M., Reynolds R.T. A non-parametric, supervised classification of vegetation types on the Kaibab National Forest using decision trees. Int. J. Remote Sens. 2003, 24(9):1835-1852.
    • (2003) Int. J. Remote Sens. , vol.24 , Issue.9 , pp. 1835-1852
    • Joy, S.M.1    Reich, R.M.2    Reynolds, R.T.3
  • 22
    • 0017360990 scopus 로고
    • The measurement of observer agreement for categorical data
    • Landis J.R., Koch G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33(1):159-174.
    • (1977) Biometrics , vol.33 , Issue.1 , pp. 159-174
    • Landis, J.R.1    Koch, G.G.2
  • 23
    • 77957768057 scopus 로고    scopus 로고
    • Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors
    • Latifi H., Nothdurft A., Koch B. Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors. Forestry 2010, 83(4):395-407.
    • (2010) Forestry , vol.83 , Issue.4 , pp. 395-407
    • Latifi, H.1    Nothdurft, A.2    Koch, B.3
  • 24
    • 31344453556 scopus 로고    scopus 로고
    • Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (randomForest)
    • Lawrence R.L., Wood S.D., Sheley R.L. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (randomForest). Remote Sens. Environ. 2006, 100(3):356-362.
    • (2006) Remote Sens. Environ. , vol.100 , Issue.3 , pp. 356-362
    • Lawrence, R.L.1    Wood, S.D.2    Sheley, R.L.3
  • 25
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • Liaw A., Wiener M. Classification and regression by random forest. R News 2002, 2(3):18-22.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 27
    • 0029275243 scopus 로고
    • A feedback based modification of the NDVI to minimize canopy background and atmospheric noise
    • Liu H., Huete A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33(2):457-465.
    • (1995) IEEE Trans. Geosci. Remote Sens. , vol.33 , Issue.2 , pp. 457-465
    • Liu, H.1    Huete, A.2
  • 29
    • 0032724134 scopus 로고    scopus 로고
    • Application of Multi-temporal Landsat 5 TM imagery for Wetland Identification
    • Lunetta R.S., Balogh M.E. Application of Multi-temporal Landsat 5 TM imagery for Wetland Identification. Photogrammetric Engineering and Remote Sensing 1999, 65(11):1303-1310.
    • (1999) Photogrammetric Engineering and Remote Sensing , vol.65 , Issue.11 , pp. 1303-1310
    • Lunetta, R.S.1    Balogh, M.E.2
  • 31
    • 40349110669 scopus 로고    scopus 로고
    • Crop classification by support vector machine with intelligently selected training data for an operational application
    • Mathur A., Foody G.M. Crop classification by support vector machine with intelligently selected training data for an operational application. Int. J. Remote Sens. 2008, 29(8):2227-2240.
    • (2008) Int. J. Remote Sens. , vol.29 , Issue.8 , pp. 2227-2240
    • Mathur, A.1    Foody, G.M.2
  • 32
    • 84880413388 scopus 로고    scopus 로고
    • The performance of Random Forests in an Operational Setting for Large Area Sclerophyll Forest Classification
    • Mellor A., Haywood A., Stone C., Jones S. The performance of Random Forests in an Operational Setting for Large Area Sclerophyll Forest Classification. Remote Sensing 2013, 5(6):2838-2856.
    • (2013) Remote Sensing , vol.5 , Issue.6 , pp. 2838-2856
    • Mellor, A.1    Haywood, A.2    Stone, C.3    Jones, S.4
  • 33
    • 78651435852 scopus 로고    scopus 로고
    • Crop yield forecasting on the Canadian Prairies using MODIS NDVI data
    • Mkhabela M.S., Bullock P., Raj S., Wang S., Yang Y. Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric. For. Meteorol. 2011, 151(3):385-393.
    • (2011) Agric. For. Meteorol. , vol.151 , Issue.3 , pp. 385-393
    • Mkhabela, M.S.1    Bullock, P.2    Raj, S.3    Wang, S.4    Yang, Y.5
  • 36
    • 84859751452 scopus 로고    scopus 로고
    • Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multi Regression and Random Forest
    • Oliveira S., Oehler F., San-Miguel-Ayanz J., Camia A., Pereira J.M.C. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multi Regression and Random Forest. For. Ecol. Manage. 2012, 275:117-129.
    • (2012) For. Ecol. Manage. , vol.275 , pp. 117-129
    • Oliveira, S.1    Oehler, F.2    San-Miguel-Ayanz, J.3    Camia, A.4    Pereira, J.M.C.5
  • 37
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • Pal M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26(1):217-222.
    • (2005) Int. J. Remote Sens. , vol.26 , Issue.1 , pp. 217-222
    • Pal, M.1
  • 38
    • 0141569007 scopus 로고    scopus 로고
    • An assessment of the effectiveness of decision tree methods for land cover classification
    • Pal M., Mather P.M. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ. 2003, 86(4):554-565.
    • (2003) Remote Sens. Environ. , vol.86 , Issue.4 , pp. 554-565
    • Pal, M.1    Mather, P.M.2
  • 39
    • 0030616083 scopus 로고    scopus 로고
    • Mapping of crop rotation using multidate Indian Remote Sensing Satellite digital data
    • Panigrahy S., Sharma S.A. Mapping of crop rotation using multidate Indian Remote Sensing Satellite digital data. ISPRS J. Photogramm. Remote Sens. 1997, 52(2):85-91.
    • (1997) ISPRS J. Photogramm. Remote Sens. , vol.52 , Issue.2 , pp. 85-91
    • Panigrahy, S.1    Sharma, S.A.2
  • 40
    • 33645330972 scopus 로고    scopus 로고
    • Newer classification and regression tree techniques: bagging and random forests for ecological prediction
    • Prasad A.M., Iverson L.R., Liaw A. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 2006, 9(2):181-199.
    • (2006) Ecosystems , vol.9 , Issue.2 , pp. 181-199
    • Prasad, A.M.1    Iverson, L.R.2    Liaw, A.3
  • 41
    • 84931287140 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Australia. <> (accessed 30.11.2013).
    • R Development Core Team, 2011. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Australia. <> (accessed 30.11.2013). http://www.r-project.org.
    • (2011)
  • 44
    • 41249103454 scopus 로고    scopus 로고
    • Mapping land-cover modifications over large areas: a comparison of machine learning algorithms
    • Rogan J., Franklin J., Stow D., Miller J., Woodcock C., Roberts D. Mapping land-cover modifications over large areas: a comparison of machine learning algorithms. Remote Sens. Environ. 2008, 112(5):2272-2283.
    • (2008) Remote Sens. Environ. , vol.112 , Issue.5 , pp. 2272-2283
    • Rogan, J.1    Franklin, J.2    Stow, D.3    Miller, J.4    Woodcock, C.5    Roberts, D.6
  • 46
    • 41249090031 scopus 로고    scopus 로고
    • Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments
    • Sesnie S.E., Gessler P.E., Finegan B., Thessler S. Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments. Remote Sens. Environ. 2008, 112(5):2145-2159.
    • (2008) Remote Sens. Environ. , vol.112 , Issue.5 , pp. 2145-2159
    • Sesnie, S.E.1    Gessler, P.E.2    Finegan, B.3    Thessler, S.4
  • 47
    • 37249015863 scopus 로고    scopus 로고
    • The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco
    • Simonneaux V., Duchemin B., Helson D., Er-Raki S., Olioso A., Chehbouni A.G. The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco. Int. J. Remote Sens. 2008, 29(1):95-116.
    • (2008) Int. J. Remote Sens. , vol.29 , Issue.1 , pp. 95-116
    • Simonneaux, V.1    Duchemin, B.2    Helson, D.3    Er-Raki, S.4    Olioso, A.5    Chehbouni, A.G.6
  • 48
    • 84931287141 scopus 로고    scopus 로고
    • GRASS GIS manual. (accessed 28.11.2013).
    • Tizado, E.J., 2013. GRASS GIS manual. <> (accessed 28.11.2013). http://grass.osgeo.org/grass64/manuals/i.landsat.toar.html.
    • (2013)
    • Tizado, E.J.1
  • 49
    • 84931261735 scopus 로고    scopus 로고
    • (accessed 29.11.2013).
    • USGS, 2013. SLC-off Products: Background. <> (accessed 29.11.2013). http://landsat.usgs.gov/products_slcoffbackground.php.
    • (2013) SLC-off Products: Background
  • 50
    • 2942752404 scopus 로고    scopus 로고
    • Comparison of IKONOS and Quick-Bird images for mapping mangrove species on the Caribbean coast of Panama
    • Wang L., Sousa W.P., Gong P., Biging G.S. Comparison of IKONOS and Quick-Bird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sens. Environ. 2004, 91(3-4):432-440.
    • (2004) Remote Sens. Environ. , vol.91 , Issue.3-4 , pp. 432-440
    • Wang, L.1    Sousa, W.P.2    Gong, P.3    Biging, G.S.4
  • 51
    • 69849104695 scopus 로고    scopus 로고
    • Classifier ensembles for land cover mapping using multitemporal SAR imagery
    • Waske B., Braun M. Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS J. Photogramm. Remote Sens. 2009, 64(5):450-457.
    • (2009) ISPRS J. Photogramm. Remote Sens. , vol.64 , Issue.5 , pp. 450-457
    • Waske, B.1    Braun, M.2
  • 52
    • 79551684301 scopus 로고    scopus 로고
    • Evaluating high resolution SPOT 5 satellite imagery for crop identification
    • Yang C., Everitt J.H., Murden D. Evaluating high resolution SPOT 5 satellite imagery for crop identification. Comput. Electron. Agr. 2011, 75(2):347-354.
    • (2011) Comput. Electron. Agr. , vol.75 , Issue.2 , pp. 347-354
    • Yang, C.1    Everitt, J.H.2    Murden, D.3
  • 53
    • 25844488665 scopus 로고    scopus 로고
    • Multi-level land cover mapping of the Twin Cities (Minnesota) metropolitan area with multi-seasonal Landsat TM/ETM+ Data
    • Yuan F., Bauer M.E., Heinert N.J., Holden G.R. Multi-level land cover mapping of the Twin Cities (Minnesota) metropolitan area with multi-seasonal Landsat TM/ETM+ Data. Geocarto Int. 2005, 20(2):5-13.
    • (2005) Geocarto Int. , vol.20 , Issue.2 , pp. 5-13
    • Yuan, F.1    Bauer, M.E.2    Heinert, N.J.3    Holden, G.R.4
  • 54
    • 84880481368 scopus 로고    scopus 로고
    • A study on software effort prediction using machine learning techniques
    • Zhang W., Yang Y., Wang Q. A study on software effort prediction using machine learning techniques. Commun. Comput. Inform. Sci. 2013, 275:1-15.
    • (2013) Commun. Comput. Inform. Sci. , vol.275 , pp. 1-15
    • Zhang, W.1    Yang, Y.2    Wang, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.