메뉴 건너뛰기




Volumn 169, Issue , 2016, Pages 424-433

Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals

Author keywords

Machine learning; MSG SEVIRI; Rainfall area; Rainfall rate; Rainfall retrieval

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; COMPLEX NETWORKS; DECISION TREES; INTERACTIVE COMPUTER SYSTEMS; LEARNING SYSTEMS; OPTIMIZATION; RAIN; REAL TIME SYSTEMS; REMOTE SENSING; SATELLITES; SUPPORT VECTOR MACHINES;

EID: 84954105449     PISSN: 01698095     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.atmosres.2015.09.021     Document Type: Article
Times cited : (92)

References (51)
  • 1
    • 0001852742 scopus 로고
    • A satellite infrared technique to estimate tropical convective and stratiform rainfall
    • Adler R.F., Negri A.J. A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteorol. 1988, 27:30-51.
    • (1988) J. Appl. Meteorol. , vol.27 , pp. 30-51
    • Adler, R.F.1    Negri, A.J.2
  • 3
    • 0023468448 scopus 로고
    • The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982-84
    • Arkin P.A., Meisner B.N. The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982-84. Mon. Weather Rev. 1987, 115:51-74.
    • (1987) Mon. Weather Rev. , vol.115 , pp. 51-74
    • Arkin, P.A.1    Meisner, B.N.2
  • 4
    • 0035416433 scopus 로고    scopus 로고
    • GOES multispectral rainfall algorithm (GMSRA)
    • Ba M.B., Gruber A. GOES multispectral rainfall algorithm (GMSRA). J. Appl. Meteorol. 2001, 40:1500-1514.
    • (2001) J. Appl. Meteorol. , vol.40 , pp. 1500-1514
    • Ba, M.B.1    Gruber, A.2
  • 6
    • 68049111251 scopus 로고    scopus 로고
    • Evaluating the utility of multispectral information in delineating the areal extent of precipitation
    • Behrangi A., Hsu K.-l., Imam B., Sorooshian S., Kuligowski R.J. Evaluating the utility of multispectral information in delineating the areal extent of precipitation. J. Hydrometeorol. 2009, 10:684-700.
    • (2009) J. Hydrometeorol. , vol.10 , pp. 684-700
    • Behrangi, A.1    Hsu, K.-L.2    Imam, B.3    Sorooshian, S.4    Kuligowski, R.J.5
  • 7
    • 12844286965 scopus 로고    scopus 로고
    • Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data
    • Bruzzone L., Melgani F. Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data. IEEE Trans. Geosci. Remote Sens. 2005, 43:159-174.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , pp. 159-174
    • Bruzzone, L.1    Melgani, F.2
  • 8
    • 31144467990 scopus 로고    scopus 로고
    • Delineation of precipitation areas from MODIS visible and infrared imagery with artificial neural networks
    • Capacci D., Conway B.J. Delineation of precipitation areas from MODIS visible and infrared imagery with artificial neural networks. Meteorol. Appl. 2005, 12:291-305.
    • (2005) Meteorol. Appl. , vol.12 , pp. 291-305
    • Capacci, D.1    Conway, B.J.2
  • 10
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27:861-874.
    • (2006) Pattern Recogn. Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 11
    • 84860444114 scopus 로고    scopus 로고
    • Classifying convective and stratiform rain using multispectral infrared Meteosat second generation satellite data
    • Feidas H., Giannakos A. Classifying convective and stratiform rain using multispectral infrared Meteosat second generation satellite data. Theor. Appl. Climatol. 2012, 108:613-630.
    • (2012) Theor. Appl. Climatol. , vol.108 , pp. 613-630
    • Feidas, H.1    Giannakos, A.2
  • 12
    • 84880847007 scopus 로고    scopus 로고
    • Classification of convective and stratiform rain based on the spectral and textural features of Meteosat second generation infrared data
    • Giannakos A., Feidas H. Classification of convective and stratiform rain based on the spectral and textural features of Meteosat second generation infrared data. Theor. Appl. Climatol. 2013, 113:495-510.
    • (2013) Theor. Appl. Climatol. , vol.113 , pp. 495-510
    • Giannakos, A.1    Feidas, H.2
  • 14
    • 0842334546 scopus 로고    scopus 로고
    • A neural network approach to real-time rainfall estimation for Africa using satellite data
    • Grimes D., Coppola E., Verdecchia M., Visconti G. A neural network approach to real-time rainfall estimation for Africa using satellite data. J. Hydrometeorol. 2003, 4:1119-1133.
    • (2003) J. Hydrometeorol. , vol.4 , pp. 1119-1133
    • Grimes, D.1    Coppola, E.2    Verdecchia, M.3    Visconti, G.4
  • 16
    • 13244261088 scopus 로고    scopus 로고
    • Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system
    • Hong Y., Hsu K.-L., Sorooshian S., Gao X. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteorol. 2004, 43:1834-1853.
    • (2004) J. Appl. Meteorol. , vol.43 , pp. 1834-1853
    • Hong, Y.1    Hsu, K.-L.2    Sorooshian, S.3    Gao, X.4
  • 17
    • 0031399333 scopus 로고    scopus 로고
    • Precipitation estimation from remotely sensed information using artificial neural networks
    • Hsu K.-l., Gao X., Sorooshian S., Gupta H.V. Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteorol. 1997, 36:1176-1190.
    • (1997) J. Appl. Meteorol. , vol.36 , pp. 1176-1190
    • Hsu, K.-L.1    Gao, X.2    Sorooshian, S.3    Gupta, H.V.4
  • 18
    • 84899648421 scopus 로고    scopus 로고
    • Non-parametric rain/no rain screening method for satellite-borne passive microwave radiometers at 19-85GHz channels with the random forests algorithm
    • Islam T., Rico-Ramirez M.A., Srivastava P.K., Dai Q. Non-parametric rain/no rain screening method for satellite-borne passive microwave radiometers at 19-85GHz channels with the random forests algorithm. Int. J. Remote Sens. 2014, 35:3254-3267.
    • (2014) Int. J. Remote Sens. , vol.35 , pp. 3254-3267
    • Islam, T.1    Rico-Ramirez, M.A.2    Srivastava, P.K.3    Dai, Q.4
  • 21
    • 67650759361 scopus 로고    scopus 로고
    • A kernel functions analysis for support vector machines for land cover classification
    • Kavzoglu T., Colkesen I. A kernel functions analysis for support vector machines for land cover classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11:352-359.
    • (2009) Int. J. Appl. Earth Obs. Geoinf. , vol.11 , pp. 352-359
    • Kavzoglu, T.1    Colkesen, I.2
  • 22
    • 80051905151 scopus 로고    scopus 로고
    • Global precipitation measurement
    • Kidd C., Huffman G. Global precipitation measurement. Meteorol. Appl. 2011, 18:334-353.
    • (2011) Meteorol. Appl. , vol.18 , pp. 334-353
    • Kidd, C.1    Huffman, G.2
  • 23
    • 79953812002 scopus 로고    scopus 로고
    • Status of satellite precipitation retrievals
    • Kidd C., Levizzani V. Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci. 2011, 15:1109-1116.
    • (2011) Hydrol. Earth Syst. Sci. , vol.15 , pp. 1109-1116
    • Kidd, C.1    Levizzani, V.2
  • 28
    • 77957833039 scopus 로고    scopus 로고
    • Rainfall-rate assignment using MSG SEVIRI data - a promising approach to spaceborne rainfall-rate retrieval for midlatitudes
    • Kühnlein M., Thies B., Nauss T., Bendix J. Rainfall-rate assignment using MSG SEVIRI data - a promising approach to spaceborne rainfall-rate retrieval for midlatitudes. J. Appl. Meteorol. Climatol. 2010, 49:1477-1495.
    • (2010) J. Appl. Meteorol. Climatol. , vol.49 , pp. 1477-1495
    • Kühnlein, M.1    Thies, B.2    Nauss, T.3    Bendix, J.4
  • 29
    • 84910652230 scopus 로고    scopus 로고
    • Precipitation estimates from MSG SEVIRI daytime, nighttime, and twilight data with random forests
    • Kühnlein M., Appelhans T., Thies B., Nauss T. Precipitation estimates from MSG SEVIRI daytime, nighttime, and twilight data with random forests. J. Appl. Meteorol. Climatol. 2014, 53:2457-2480.
    • (2014) J. Appl. Meteorol. Climatol. , vol.53 , pp. 2457-2480
    • Kühnlein, M.1    Appelhans, T.2    Thies, B.3    Nauss, T.4
  • 30
    • 84888031568 scopus 로고    scopus 로고
    • Improving the accuracy of rainfall rates from optical satellite sensors with machine learning - a random forests-based approach applied to MSG SEVIRI
    • Kühnlein M., Appelhans T., Thies B., Nauß T. Improving the accuracy of rainfall rates from optical satellite sensors with machine learning - a random forests-based approach applied to MSG SEVIRI. Remote Sens. Environ. 2014, 141:129-143.
    • (2014) Remote Sens. Environ. , vol.141 , pp. 129-143
    • Kühnlein, M.1    Appelhans, T.2    Thies, B.3    Nauß, T.4
  • 31
    • 0031449594 scopus 로고    scopus 로고
    • Estimation of precipitation area and rain intensity based on the microphysical properties retrieved from NOAA AVHRR data
    • Lensky I.M., Rosenfeld D. Estimation of precipitation area and rain intensity based on the microphysical properties retrieved from NOAA AVHRR data. J. Appl. Meteorol. 1997, 36:234-242.
    • (1997) J. Appl. Meteorol. , vol.36 , pp. 234-242
    • Lensky, I.M.1    Rosenfeld, D.2
  • 33
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw A., Wiener M. Classification and regression by randomForest. R. News 2002, 2:18-22.
    • (2002) R. News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 34
    • 33746529930 scopus 로고    scopus 로고
    • A study in machine learning from imbalanced data for sentence boundary detection in speech
    • Liu Y., Chawla N.V., Harper M.P., Shriberg E., Stolcke A. A study in machine learning from imbalanced data for sentence boundary detection in speech. Comput. Speech Lang. 2006, 20:468-494.
    • (2006) Comput. Speech Lang. , vol.20 , pp. 468-494
    • Liu, Y.1    Chawla, N.V.2    Harper, M.P.3    Shriberg, E.4    Stolcke, A.5
  • 36
    • 33750562770 scopus 로고    scopus 로고
    • Discriminating raining from non-raining clouds at mid-latitudes using multispectral satellite data
    • Nauss T., Kokhanovsky A.A. Discriminating raining from non-raining clouds at mid-latitudes using multispectral satellite data. Atmos. Chem. Phys. 2006, 6:5031-5036.
    • (2006) Atmos. Chem. Phys. , vol.6 , pp. 5031-5036
    • Nauss, T.1    Kokhanovsky, A.A.2
  • 37
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • Pal M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26:217-222.
    • (2005) Int. J. Remote Sens. , vol.26 , pp. 217-222
    • Pal, M.1
  • 38
    • 77951620161 scopus 로고    scopus 로고
    • Precipitation retrieval from space: an overview
    • Prigent C. Precipitation retrieval from space: an overview. C. R. Geosci. 2010, 342:380-389.
    • (2010) C. R. Geosci. , vol.342 , pp. 380-389
    • Prigent, C.1
  • 41
    • 33646380617 scopus 로고    scopus 로고
    • Artificial neural-network technique for precipitation nowcasting from satellite imagery
    • Rivolta G., Marzano F.S., Coppola E., Verdecchia M. Artificial neural-network technique for precipitation nowcasting from satellite imagery. Adv. Geosci. 2006, 7:97-103.
    • (2006) Adv. Geosci. , vol.7 , pp. 97-103
    • Rivolta, G.1    Marzano, F.S.2    Coppola, E.3    Verdecchia, M.4
  • 43
    • 72049102862 scopus 로고    scopus 로고
    • SEVIRI rainfall retrieval and validation using weather radar observations
    • Roebeling R., Holleman I. SEVIRI rainfall retrieval and validation using weather radar observations. J. Geophys. Res. 2009, 114.
    • (2009) J. Geophys. Res. , vol.114
    • Roebeling, R.1    Holleman, I.2
  • 44
    • 0034482007 scopus 로고    scopus 로고
    • Combining multiple classifiers: an application using spatial and remotely sensed information for land cover type mapping
    • Steele B. Combining multiple classifiers: an application using spatial and remotely sensed information for land cover type mapping. Remote Sens. Environ. 2000, 74:545-556.
    • (2000) Remote Sens. Environ. , vol.74 , pp. 545-556
    • Steele, B.1
  • 45
    • 2942552158 scopus 로고    scopus 로고
    • Neural networks in satellite rainfall estimation
    • Tapiador F.J., Kidd C., Hsu K.-L., Marzano F. Neural networks in satellite rainfall estimation. Met. Apps 2004, 11:83-91.
    • (2004) Met. Apps , vol.11 , pp. 83-91
    • Tapiador, F.J.1    Kidd, C.2    Hsu, K.-L.3    Marzano, F.4
  • 46
    • 80051864836 scopus 로고    scopus 로고
    • Satellite based remote sensing of weather and climate: recent achievements and future perspectives
    • Thies B., Bendix J. Satellite based remote sensing of weather and climate: recent achievements and future perspectives. Meteorol. Appl. 2011, 18:262-295.
    • (2011) Meteorol. Appl. , vol.18 , pp. 262-295
    • Thies, B.1    Bendix, J.2
  • 47
    • 43249119094 scopus 로고    scopus 로고
    • Discriminating raining from non-raining clouds at mid-latitudes using Meteosat second generation daytime data
    • Thies B., Nauss T., Bendix J. Discriminating raining from non-raining clouds at mid-latitudes using Meteosat second generation daytime data. Atmos. Chem. Phys. 2008, 8:2341-2349.
    • (2008) Atmos. Chem. Phys. , vol.8 , pp. 2341-2349
    • Thies, B.1    Nauss, T.2    Bendix, J.3
  • 48
    • 42149109548 scopus 로고    scopus 로고
    • Discriminating raining from non-raining cloud areas at mid-latitudes using Meteosat second generation SEVIRI night-time data
    • Thies B., Nauss T., Bendix J. Discriminating raining from non-raining cloud areas at mid-latitudes using Meteosat second generation SEVIRI night-time data. Meteorol. Appl. 2008, 15:219-230.
    • (2008) Meteorol. Appl. , vol.15 , pp. 219-230
    • Thies, B.1    Nauss, T.2    Bendix, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.