메뉴 건너뛰기




Volumn 44, Issue , 2017, Pages 1-7

Thiamin biofortification of crops

Author keywords

[No Author keywords available]

Indexed keywords

BIOCHEMISTRY; BIOSYNTHESIS; CROPS;

EID: 84991798505     PISSN: 09581669     EISSN: 18790429     Source Type: Journal    
DOI: 10.1016/j.copbio.2016.09.005     Document Type: Review
Times cited : (42)

References (52)
  • 1
    • 77956338945 scopus 로고    scopus 로고
    • Thiamine in plants: aspects of its metabolism and functions
    • 1 Goyer, A., Thiamine in plants: aspects of its metabolism and functions. Phytochemistry 71 (2010), 1615–1624.
    • (2010) Phytochemistry , vol.71 , pp. 1615-1624
    • Goyer, A.1
  • 2
    • 80051558945 scopus 로고    scopus 로고
    • 1 (Thiamine): a cofactor for enzymes involved in the main metabolic pathways and an environmental stress protectant
    • F. Rebeille R. Douce Academic Press Ltd-Elsevier Science Ltd
    • 1 (Thiamine): a cofactor for enzymes involved in the main metabolic pathways and an environmental stress protectant. Rebeille, F., Douce, R., (eds.) Biosynthesis of Vitamins in Plants: Vitamins A, B1, B2, B3, B5., 2011, Academic Press Ltd-Elsevier Science Ltd, 37–91.
    • (2011) Biosynthesis of Vitamins in Plants: Vitamins A, B1, B2, B3, B5. , pp. 37-91
    • Rapala-Kozik, M.1
  • 4
    • 13944277854 scopus 로고    scopus 로고
    • Thiamine deficiency and its prevention and control in major emergencies
    • World Health Organization WHO/ND/99.13
    • 4 WHO, Thiamine deficiency and its prevention and control in major emergencies. Micronutrients Series, 1999, World Health Organization, 1–45 WHO/ND/99.13.
    • (1999) Micronutrients Series , pp. 1-45
    • WHO1
  • 6
    • 0036147706 scopus 로고    scopus 로고
    • The history and future of food fortification in the United States: a public health perspective
    • 6 Backstrand, J.R., The history and future of food fortification in the United States: a public health perspective. Nutr Rev 60 (2002), 15–26.
    • (2002) Nutr Rev , vol.60 , pp. 15-26
    • Backstrand, J.R.1
  • 7
    • 33745698824 scopus 로고    scopus 로고
    • A review of the biochemistry, metabolism, and clinical benefits of thiamin (e) and its derivatives
    • 7 Lonsdale, D., A review of the biochemistry, metabolism, and clinical benefits of thiamin (e) and its derivatives. Evidence-based Complem Alternat Med 3 (2006), 49–59.
    • (2006) Evidence-based Complem Alternat Med , vol.3 , pp. 49-59
    • Lonsdale, D.1
  • 8
    • 77955040464 scopus 로고    scopus 로고
    • Cardiac beriberi: often a missed diagnosis
    • 8 Rao, S.N., Chandak, G.R., Cardiac beriberi: often a missed diagnosis. J Trop Pediatr 56 (2010), 284–285.
    • (2010) J Trop Pediatr , vol.56 , pp. 284-285
    • Rao, S.N.1    Chandak, G.R.2
  • 10
    • 84952837928 scopus 로고    scopus 로고
    • Enhancement of thiamin content in Arabidopsis thaliana by metabolic engineering
    • This study is the first report of engineering the thiamin biosynthetic pathway in plants. The authors show that a minimum of two thiamin biosynthetic genes, thiC and thi1, must be overexpressed to increase thiamin content in Arabidopsis leaves and seeds.
    • 10•• Dong, W., Stockwell, V.O., Goyer, A., Enhancement of thiamin content in Arabidopsis thaliana by metabolic engineering. Plant Cell Physiol 56 (2015), 2285–2296 This study is the first report of engineering the thiamin biosynthetic pathway in plants. The authors show that a minimum of two thiamin biosynthetic genes, thiC and thi1, must be overexpressed to increase thiamin content in Arabidopsis leaves and seeds.
    • (2015) Plant Cell Physiol , vol.56 , pp. 2285-2296
    • Dong, W.1    Stockwell, V.O.2    Goyer, A.3
  • 11
    • 85009153681 scopus 로고    scopus 로고
    • Overexpression of thiamin biosynthesis genes in rice increases leaf and unpolished grain thiamin content but not resistance to Xanthomonas oryzae pv. oryzae
    • This study is the first report of engineering the thiamin biosynthetic pathway in a staple crop. The authors show that rice plants that express the two thiamin biosynthesis genes thiC and thi1 under the control of constitutive promoters produce seeds with thiamin level up to 5-fold greater than that of the non-engineered plants, but the increase in thiamin content occurs mostly in the outer layers of the grain, not in the endosperm.
    • 11•• Dong, W., Thomas, N., Ronald, P.C., Goyer, A., Overexpression of thiamin biosynthesis genes in rice increases leaf and unpolished grain thiamin content but not resistance to Xanthomonas oryzae pv. oryzae. Front Plant Sci, 2016, 7 This study is the first report of engineering the thiamin biosynthetic pathway in a staple crop. The authors show that rice plants that express the two thiamin biosynthesis genes thiC and thi1 under the control of constitutive promoters produce seeds with thiamin level up to 5-fold greater than that of the non-engineered plants, but the increase in thiamin content occurs mostly in the outer layers of the grain, not in the endosperm.
    • (2016) Front Plant Sci , pp. 7
    • Dong, W.1    Thomas, N.2    Ronald, P.C.3    Goyer, A.4
  • 12
    • 84936949955 scopus 로고    scopus 로고
    • Natures balancing act: examining biosynthesis de novo, recycling and processing damaged vitamin B metabolites
    • This review provides an excellent overview of recent research developments in thiamin metabolism in plants.
    • 12•• Colinas, M., Fitzpatrick, T.B., Natures balancing act: examining biosynthesis de novo, recycling and processing damaged vitamin B metabolites. Curr Opin Plant Biol 25 (2015), 98–106 This review provides an excellent overview of recent research developments in thiamin metabolism in plants.
    • (2015) Curr Opin Plant Biol , vol.25 , pp. 98-106
    • Colinas, M.1    Fitzpatrick, T.B.2
  • 13
    • 84907308393 scopus 로고    scopus 로고
    • Divisions of labor in the thiamin biosynthetic pathway among organs of maize
    • This study reports divergent expression pattern of thiamin biosynthesis, salvage, and transport genes among organs of maize, and highlights different strategies for thiamin acquisition among organs, a concept that the authors introduce as divisions of labor.
    • 13•• Guan, J.C., Hasnain, G., Garrett, T.J., Chase, C.D., Gregory, J.F., Hanson, A.D., McCarty, D.R., Divisions of labor in the thiamin biosynthetic pathway among organs of maize. Front Plant Sci 5 (2014), 1–11 This study reports divergent expression pattern of thiamin biosynthesis, salvage, and transport genes among organs of maize, and highlights different strategies for thiamin acquisition among organs, a concept that the authors introduce as divisions of labor.
    • (2014) Front Plant Sci , vol.5 , pp. 1-11
    • Guan, J.C.1    Hasnain, G.2    Garrett, T.J.3    Chase, C.D.4    Gregory, J.F.5    Hanson, A.D.6    McCarty, D.R.7
  • 15
    • 43049143574 scopus 로고    scopus 로고
    • AtTHIC, a gene involved in thiamine biosynthesis in Arabidopsis thaliana
    • 15 Kong, D., Zhu, Y., Wu, H., Cheng, X., Liang, H., Ling, H.Q., AtTHIC, a gene involved in thiamine biosynthesis in Arabidopsis thaliana. Cell Res 18 (2008), 566–576.
    • (2008) Cell Res , vol.18 , pp. 566-576
    • Kong, D.1    Zhu, Y.2    Wu, H.3    Cheng, X.4    Liang, H.5    Ling, H.Q.6
  • 16
    • 37849045636 scopus 로고    scopus 로고
    • Riboswitch control of gene expression in plants by splicing and alternative 3’ end processing of mRNAs
    • 16 Wachter, A., Tunc-Ozdemir, M., Grove, B.C., Green, P.J., Shintani, D.K., Breaker, R.R., Riboswitch control of gene expression in plants by splicing and alternative 3’ end processing of mRNAs. Plant Cell 19 (2007), 3437–3450.
    • (2007) Plant Cell , vol.19 , pp. 3437-3450
    • Wachter, A.1    Tunc-Ozdemir, M.2    Grove, B.C.3    Green, P.J.4    Shintani, D.K.5    Breaker, R.R.6
  • 17
    • 85011940612 scopus 로고    scopus 로고
    • Riboswitch-mediated control of gene expression in eukaryotes
    • 17 Wachter, A., Riboswitch-mediated control of gene expression in eukaryotes. RNA Biol 7 (2010), 1–9.
    • (2010) RNA Biol , vol.7 , pp. 1-9
    • Wachter, A.1
  • 18
    • 36248989143 scopus 로고    scopus 로고
    • Riboswitch-dependent gene regulation and its evolution in the plant kingdom
    • 18 Bocobza, S., Adato, A., Mandel, T., Shapira, M., Nudler, E., Aharoni, A., Riboswitch-dependent gene regulation and its evolution in the plant kingdom. Genes Dev 21 (2007), 2874–2879.
    • (2007) Genes Dev , vol.21 , pp. 2874-2879
    • Bocobza, S.1    Adato, A.2    Mandel, T.3    Shapira, M.4    Nudler, E.5    Aharoni, A.6
  • 19
    • 0038136962 scopus 로고    scopus 로고
    • Metabolite-binding RNA domains are present in the genes of eukaryotes
    • 19 Sudarsan, N., Barrick, J.E., Breaker, R.R., Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9 (2003), 644–647.
    • (2003) RNA , vol.9 , pp. 644-647
    • Sudarsan, N.1    Barrick, J.E.2    Breaker, R.R.3
  • 20
    • 53149095767 scopus 로고    scopus 로고
    • Switching the light on plant riboswitches
    • 20 Bocobza, S.E., Aharoni, A., Switching the light on plant riboswitches. Trends Plant Sci 13 (2008), 526–533.
    • (2008) Trends Plant Sci , vol.13 , pp. 526-533
    • Bocobza, S.E.1    Aharoni, A.2
  • 21
    • 0030209451 scopus 로고    scopus 로고
    • Identification of agthi1, whose product is involved in biosynthesis of the thiamine precursor thiazole, in actinorhizal nodules of Alnus glutinosa
    • 21 Ribeiro, A., Praekelt, U., Akkermans, A.D., Meacock, P.A., van Kammen, A., Bisseling, T., Pawlowski, K., Identification of agthi1, whose product is involved in biosynthesis of the thiamine precursor thiazole, in actinorhizal nodules of Alnus glutinosa. Plant J 10 (1996), 361–368.
    • (1996) Plant J , vol.10 , pp. 361-368
    • Ribeiro, A.1    Praekelt, U.2    Akkermans, A.D.3    Meacock, P.A.4    van Kammen, A.5    Bisseling, T.6    Pawlowski, K.7
  • 22
    • 33947204418 scopus 로고    scopus 로고
    • Biosynthesis of thiamin thiazole in eukaryotes: conversion of NAD to an advanced intermediate
    • 22 Chatterjee, A., Jurgenson, C.T., Schroeder, F.C., Ealick, S.E., Begley, T.P., Biosynthesis of thiamin thiazole in eukaryotes: conversion of NAD to an advanced intermediate. J Am Chem Soc 129 (2007), 2914–2922.
    • (2007) J Am Chem Soc , vol.129 , pp. 2914-2922
    • Chatterjee, A.1    Jurgenson, C.T.2    Schroeder, F.C.3    Ealick, S.E.4    Begley, T.P.5
  • 23
    • 50249154198 scopus 로고    scopus 로고
    • Biosynthesis of the thiamin-thiazole in eukaryotes: identification of a thiazole tautomer intermediate
    • 23 Chatterjee, A., Schroeder, F.C., Jurgenson, C.T., Ealick, S.E., Begley, T.P., Biosynthesis of the thiamin-thiazole in eukaryotes: identification of a thiazole tautomer intermediate. J Am Chem Soc 130 (2008), 11394–11398.
    • (2008) J Am Chem Soc , vol.130 , pp. 11394-11398
    • Chatterjee, A.1    Schroeder, F.C.2    Jurgenson, C.T.3    Ealick, S.E.4    Begley, T.P.5
  • 25
    • 36749024726 scopus 로고    scopus 로고
    • Molecular characterization of the thi3 gene involved in thiamine biosynthesis in Zea mays: cDNA sequence and enzymatic and structural properties of the recombinant bifunctional protein with 4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate) kinase and thiamine monophosphate synthase activities
    • 25 Rapala-Kozik, M., Olczak, M., Ostrowska, K., Starosta, A., Kozik, A., Molecular characterization of the thi3 gene involved in thiamine biosynthesis in Zea mays: cDNA sequence and enzymatic and structural properties of the recombinant bifunctional protein with 4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate) kinase and thiamine monophosphate synthase activities. Biochem J 408 (2007), 149–159.
    • (2007) Biochem J , vol.408 , pp. 149-159
    • Rapala-Kozik, M.1    Olczak, M.2    Ostrowska, K.3    Starosta, A.4    Kozik, A.5
  • 26
    • 33847139467 scopus 로고    scopus 로고
    • Determination of the genetic, molecular, and biochemical basis of the Arabidopsis thaliana thiamin auxotroph th1
    • 26 Ajjawi, I., Tsegaye, Y., Shintani, D., Determination of the genetic, molecular, and biochemical basis of the Arabidopsis thaliana thiamin auxotroph th1. Arch Biochem Biophys 459 (2007), 107–114.
    • (2007) Arch Biochem Biophys , vol.459 , pp. 107-114
    • Ajjawi, I.1    Tsegaye, Y.2    Shintani, D.3
  • 27
    • 84955496094 scopus 로고    scopus 로고
    • Bacterial and plant HAD enzymes catalyze a missing phosphatase step in thiamin diphosphate biosynthesis
    • 27 Hasnain, G., Roje, S., Sa, N., Zallot, R., Ziemak, M.J., De Crecy-Lagard, V., Gregory, J.F., Hanson, A.D., Bacterial and plant HAD enzymes catalyze a missing phosphatase step in thiamin diphosphate biosynthesis. Biochem J 473 (2016), 157–166.
    • (2016) Biochem J , vol.473 , pp. 157-166
    • Hasnain, G.1    Roje, S.2    Sa, N.3    Zallot, R.4    Ziemak, M.J.5    De Crecy-Lagard, V.6    Gregory, J.F.7    Hanson, A.D.8
  • 28
    • 34848895965 scopus 로고    scopus 로고
    • Thiamin pyrophosphokinase is required for thiamin cofactor activation in Arabidopsis
    • 28 Ajjawi, I., Rodriguez Milla, M.A., Cushman, J., Shintani, D.K., Thiamin pyrophosphokinase is required for thiamin cofactor activation in Arabidopsis. Plant Mol Biol 65 (2007), 151–162.
    • (2007) Plant Mol Biol , vol.65 , pp. 151-162
    • Ajjawi, I.1    Rodriguez Milla, M.A.2    Cushman, J.3    Shintani, D.K.4
  • 30
    • 84874548158 scopus 로고    scopus 로고
    • Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis
    • 30 Bocobza, S.E., Malitsky, S., Araujo, W.L., Nunes-Nesi, A., Meir, S., Shapira, M., Fernie, A.R., Aharoni, A., Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis. Plant Cell 25 (2013), 288–307.
    • (2013) Plant Cell , vol.25 , pp. 288-307
    • Bocobza, S.E.1    Malitsky, S.2    Araujo, W.L.3    Nunes-Nesi, A.4    Meir, S.5    Shapira, M.6    Fernie, A.R.7    Aharoni, A.8
  • 37
    • 0005784354 scopus 로고
    • 14C-compounds from maternal tissue into maize seeds grown in vitro
    • 14C-compounds from maternal tissue into maize seeds grown in vitro. Plant Physiol 67 (1981), 429–432.
    • (1981) Plant Physiol , vol.67 , pp. 429-432
    • Shimamoto, K.1    Nelson, O.E.2
  • 38
    • 84964858946 scopus 로고    scopus 로고
    • 1) is concomitant with that of polyamines
    • This work identifies for the first time a transporter that mediates thiamin transport into the phloem and its function in shoot-to-root partitioning of thiamin.
    • 1) is concomitant with that of polyamines. Plant Physiol 171 (2016), 542–553 This work identifies for the first time a transporter that mediates thiamin transport into the phloem and its function in shoot-to-root partitioning of thiamin.
    • (2016) Plant Physiol , vol.171 , pp. 542-553
    • Martinis, J.1    Gas-Pascual, E.2    Szydlowski, N.3    Crevecoeur, M.4    Gisler, A.5    Burkle, L.6    Fitzpatrick, T.B.7
  • 39
    • 85009754203 scopus 로고    scopus 로고
    • ‘Nothing of chemistry disappears in biology’: the Top 30 damage-prone endogenous metabolites
    • The authors combined information from the biochemical litterature, from cheminformatics, and from genome-scale metabolic models to define a ‘Top 30’ list of metabolites that are prone to chemical damage. Thiamin is included in this list.
    • 39• Lerma-Ortiz, C., Jeffryes, J.G., Cooper, A.J.L., Niehaus, T.D., Thamm, A.M.K., Frelin, O., Aunins, T., Fiehn, O., de Crecy-Lagard, V., Henry, C.S., et al. ‘Nothing of chemistry disappears in biology’: the Top 30 damage-prone endogenous metabolites. Biochem Soc Trans 44 (2016), 961–971 The authors combined information from the biochemical litterature, from cheminformatics, and from genome-scale metabolic models to define a ‘Top 30’ list of metabolites that are prone to chemical damage. Thiamin is included in this list.
    • (2016) Biochem Soc Trans , vol.44 , pp. 961-971
    • Lerma-Ortiz, C.1    Jeffryes, J.G.2    Cooper, A.J.L.3    Niehaus, T.D.4    Thamm, A.M.K.5    Frelin, O.6    Aunins, T.7    Fiehn, O.8    de Crecy-Lagard, V.9    Henry, C.S.10
  • 40
    • 84968813917 scopus 로고    scopus 로고
    • Metabolite damage and metabolite damage control in plants
    • S.S. Merchant An excellent review on metabolite damage and metabolite damage control mechanisms in plants.
    • 40• Hanson, A.D., Henry, C.S., Fiehn, O., de Crecy-Lagard, V., Metabolite damage and metabolite damage control in plants. Merchant, S.S., (eds.) Annual Review of Plant Biology, Vol 67. Annual Reviews, 2016, 131–152 An excellent review on metabolite damage and metabolite damage control mechanisms in plants.
    • (2016) Annual Review of Plant Biology, Vol 67. Annual Reviews , pp. 131-152
    • Hanson, A.D.1    Henry, C.S.2    Fiehn, O.3    de Crecy-Lagard, V.4
  • 42
    • 84883313454 scopus 로고    scopus 로고
    • A cross-kingdom Nudix enzyme that pre-empts damage in thiamin metabolism
    • 42 Goyer, A., Hasnain, G., Frelin, O., Ralat, M.A., Gregory, J.F., Hanson, A.D., A cross-kingdom Nudix enzyme that pre-empts damage in thiamin metabolism. Biochem J 454 (2013), 533–542.
    • (2013) Biochem J , vol.454 , pp. 533-542
    • Goyer, A.1    Hasnain, G.2    Frelin, O.3    Ralat, M.A.4    Gregory, J.F.5    Hanson, A.D.6
  • 45
    • 0011130242 scopus 로고
    • Occurrence of thiamine-binding proteins in plant seeds
    • 45 Mitsunaga, T., Shimizu, M., Iwashima, A., Occurrence of thiamine-binding proteins in plant seeds. J Plant Physiol 124 (1986), 177–180.
    • (1986) J Plant Physiol , vol.124 , pp. 177-180
    • Mitsunaga, T.1    Shimizu, M.2    Iwashima, A.3
  • 46
    • 0000176928 scopus 로고
    • Accumulation of thiamine and thiamine-binding protein during development of rice seed
    • 46 Shimizu, M., Mitsunaga, T., Inaba, K., Yoshida, T., Iwashima, A., Accumulation of thiamine and thiamine-binding protein during development of rice seed. J Plant Physiol 137 (1990), 123–124.
    • (1990) J Plant Physiol , vol.137 , pp. 123-124
    • Shimizu, M.1    Mitsunaga, T.2    Inaba, K.3    Yoshida, T.4    Iwashima, A.5
  • 47
    • 0003173220 scopus 로고
    • A possible role for thiamine-binding protein in the germination of rice seed
    • 47 Mitsunaga, T., Shimizu, M., Iwashima, A., A possible role for thiamine-binding protein in the germination of rice seed. J Plant Physiol 130 (1987), 279–284.
    • (1987) J Plant Physiol , vol.130 , pp. 279-284
    • Mitsunaga, T.1    Shimizu, M.2    Iwashima, A.3
  • 48
    • 0344927788 scopus 로고    scopus 로고
    • Change of thiamin-binding protein and thiamin levels during seed maturation and germination in sesame
    • 48 Watanabe, K., Takahashi, H., Ampo, M., Mitsunaga, T., Change of thiamin-binding protein and thiamin levels during seed maturation and germination in sesame. Plant Physiol Biochem 41 (2003), 973–976.
    • (2003) Plant Physiol Biochem , vol.41 , pp. 973-976
    • Watanabe, K.1    Takahashi, H.2    Ampo, M.3    Mitsunaga, T.4
  • 49
    • 4544359557 scopus 로고    scopus 로고
    • Accumulation and degradation of thiamin-binding protein and level of thiamin in wheat seeds during seed maturation and germination
    • 49 Watanabe, K., Nishida, N., Adachi, T., Ueda, M., Mitsunaga, T., Kawamura, Y., Accumulation and degradation of thiamin-binding protein and level of thiamin in wheat seeds during seed maturation and germination. Biosci Biotechnol Biochem 68 (2004), 1243–1248.
    • (2004) Biosci Biotechnol Biochem , vol.68 , pp. 1243-1248
    • Watanabe, K.1    Nishida, N.2    Adachi, T.3    Ueda, M.4    Mitsunaga, T.5    Kawamura, Y.6
  • 51
    • 0021381114 scopus 로고
    • Purification and some properties of thiamine-binding protein from rice bran
    • 51 Nishimura, H., Uehara, Y., Sempuku, K., Iwashima, A., Purification and some properties of thiamine-binding protein from rice bran. J Nutr Sci Vitaminol (Tokyo) 30 (1984), 1–10.
    • (1984) J Nutr Sci Vitaminol (Tokyo) , vol.30 , pp. 1-10
    • Nishimura, H.1    Uehara, Y.2    Sempuku, K.3    Iwashima, A.4
  • 52
    • 84928045239 scopus 로고    scopus 로고
    • Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm
    • The authors developed a new evidence-based genome-scale reconstruction method to build organ specific metabolic model for the maize leaf, and tissue specific metabolic models for maize embryo and endosperm cells.
    • 52• Seaver, S.M.D., Bradbury, L.M.T., Frelin, O., Zarecki, R., Ruppin, E., Hanson, A.D., Henry, C.S., Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm. Front Plant Sci, 2015, 6 The authors developed a new evidence-based genome-scale reconstruction method to build organ specific metabolic model for the maize leaf, and tissue specific metabolic models for maize embryo and endosperm cells.
    • (2015) Front Plant Sci , pp. 6
    • Seaver, S.M.D.1    Bradbury, L.M.T.2    Frelin, O.3    Zarecki, R.4    Ruppin, E.5    Hanson, A.D.6    Henry, C.S.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.