-
1
-
-
77956338945
-
Thiamine in plants: aspects of its metabolism and functions
-
1 Goyer, A., Thiamine in plants: aspects of its metabolism and functions. Phytochemistry 71 (2010), 1615–1624.
-
(2010)
Phytochemistry
, vol.71
, pp. 1615-1624
-
-
Goyer, A.1
-
2
-
-
80051558945
-
1 (Thiamine): a cofactor for enzymes involved in the main metabolic pathways and an environmental stress protectant
-
F. Rebeille R. Douce Academic Press Ltd-Elsevier Science Ltd
-
1 (Thiamine): a cofactor for enzymes involved in the main metabolic pathways and an environmental stress protectant. Rebeille, F., Douce, R., (eds.) Biosynthesis of Vitamins in Plants: Vitamins A, B1, B2, B3, B5., 2011, Academic Press Ltd-Elsevier Science Ltd, 37–91.
-
(2011)
Biosynthesis of Vitamins in Plants: Vitamins A, B1, B2, B3, B5.
, pp. 37-91
-
-
Rapala-Kozik, M.1
-
4
-
-
13944277854
-
Thiamine deficiency and its prevention and control in major emergencies
-
World Health Organization WHO/ND/99.13
-
4 WHO, Thiamine deficiency and its prevention and control in major emergencies. Micronutrients Series, 1999, World Health Organization, 1–45 WHO/ND/99.13.
-
(1999)
Micronutrients Series
, pp. 1-45
-
-
WHO1
-
5
-
-
84928387650
-
Poor thiamin and riboflavin status is common among women of childbearing age in rural and urban Cambodia
-
5 Whitfield, K.C., Karakochuk, C.D., Liu, Y.Z., McCann, A., Talukder, A., Kroeun, H., Ward, M., McNulty, H., Lynd, L.D., Kitts, D.D., et al. Poor thiamin and riboflavin status is common among women of childbearing age in rural and urban Cambodia. J Nutr 145 (2015), 628–633.
-
(2015)
J Nutr
, vol.145
, pp. 628-633
-
-
Whitfield, K.C.1
Karakochuk, C.D.2
Liu, Y.Z.3
McCann, A.4
Talukder, A.5
Kroeun, H.6
Ward, M.7
McNulty, H.8
Lynd, L.D.9
Kitts, D.D.10
-
6
-
-
0036147706
-
The history and future of food fortification in the United States: a public health perspective
-
6 Backstrand, J.R., The history and future of food fortification in the United States: a public health perspective. Nutr Rev 60 (2002), 15–26.
-
(2002)
Nutr Rev
, vol.60
, pp. 15-26
-
-
Backstrand, J.R.1
-
7
-
-
33745698824
-
A review of the biochemistry, metabolism, and clinical benefits of thiamin (e) and its derivatives
-
7 Lonsdale, D., A review of the biochemistry, metabolism, and clinical benefits of thiamin (e) and its derivatives. Evidence-based Complem Alternat Med 3 (2006), 49–59.
-
(2006)
Evidence-based Complem Alternat Med
, vol.3
, pp. 49-59
-
-
Lonsdale, D.1
-
8
-
-
77955040464
-
Cardiac beriberi: often a missed diagnosis
-
8 Rao, S.N., Chandak, G.R., Cardiac beriberi: often a missed diagnosis. J Trop Pediatr 56 (2010), 284–285.
-
(2010)
J Trop Pediatr
, vol.56
, pp. 284-285
-
-
Rao, S.N.1
Chandak, G.R.2
-
9
-
-
84859029671
-
Vitamin deficiencies in humans: can plant science help?
-
9 Fitzpatrick, T.B., Basset, G.J.C., Borel, P., Carrari, F., DellaPenna, D., Fraser, P.D., Hellmann, H., Osorio, S., Rothan, C., Valpuesta, V., et al. Vitamin deficiencies in humans: can plant science help?. Plant Cell 24 (2012), 395–414.
-
(2012)
Plant Cell
, vol.24
, pp. 395-414
-
-
Fitzpatrick, T.B.1
Basset, G.J.C.2
Borel, P.3
Carrari, F.4
DellaPenna, D.5
Fraser, P.D.6
Hellmann, H.7
Osorio, S.8
Rothan, C.9
Valpuesta, V.10
-
10
-
-
84952837928
-
Enhancement of thiamin content in Arabidopsis thaliana by metabolic engineering
-
This study is the first report of engineering the thiamin biosynthetic pathway in plants. The authors show that a minimum of two thiamin biosynthetic genes, thiC and thi1, must be overexpressed to increase thiamin content in Arabidopsis leaves and seeds.
-
10•• Dong, W., Stockwell, V.O., Goyer, A., Enhancement of thiamin content in Arabidopsis thaliana by metabolic engineering. Plant Cell Physiol 56 (2015), 2285–2296 This study is the first report of engineering the thiamin biosynthetic pathway in plants. The authors show that a minimum of two thiamin biosynthetic genes, thiC and thi1, must be overexpressed to increase thiamin content in Arabidopsis leaves and seeds.
-
(2015)
Plant Cell Physiol
, vol.56
, pp. 2285-2296
-
-
Dong, W.1
Stockwell, V.O.2
Goyer, A.3
-
11
-
-
85009153681
-
Overexpression of thiamin biosynthesis genes in rice increases leaf and unpolished grain thiamin content but not resistance to Xanthomonas oryzae pv. oryzae
-
This study is the first report of engineering the thiamin biosynthetic pathway in a staple crop. The authors show that rice plants that express the two thiamin biosynthesis genes thiC and thi1 under the control of constitutive promoters produce seeds with thiamin level up to 5-fold greater than that of the non-engineered plants, but the increase in thiamin content occurs mostly in the outer layers of the grain, not in the endosperm.
-
11•• Dong, W., Thomas, N., Ronald, P.C., Goyer, A., Overexpression of thiamin biosynthesis genes in rice increases leaf and unpolished grain thiamin content but not resistance to Xanthomonas oryzae pv. oryzae. Front Plant Sci, 2016, 7 This study is the first report of engineering the thiamin biosynthetic pathway in a staple crop. The authors show that rice plants that express the two thiamin biosynthesis genes thiC and thi1 under the control of constitutive promoters produce seeds with thiamin level up to 5-fold greater than that of the non-engineered plants, but the increase in thiamin content occurs mostly in the outer layers of the grain, not in the endosperm.
-
(2016)
Front Plant Sci
, pp. 7
-
-
Dong, W.1
Thomas, N.2
Ronald, P.C.3
Goyer, A.4
-
12
-
-
84936949955
-
Natures balancing act: examining biosynthesis de novo, recycling and processing damaged vitamin B metabolites
-
This review provides an excellent overview of recent research developments in thiamin metabolism in plants.
-
12•• Colinas, M., Fitzpatrick, T.B., Natures balancing act: examining biosynthesis de novo, recycling and processing damaged vitamin B metabolites. Curr Opin Plant Biol 25 (2015), 98–106 This review provides an excellent overview of recent research developments in thiamin metabolism in plants.
-
(2015)
Curr Opin Plant Biol
, vol.25
, pp. 98-106
-
-
Colinas, M.1
Fitzpatrick, T.B.2
-
13
-
-
84907308393
-
Divisions of labor in the thiamin biosynthetic pathway among organs of maize
-
This study reports divergent expression pattern of thiamin biosynthesis, salvage, and transport genes among organs of maize, and highlights different strategies for thiamin acquisition among organs, a concept that the authors introduce as divisions of labor.
-
13•• Guan, J.C., Hasnain, G., Garrett, T.J., Chase, C.D., Gregory, J.F., Hanson, A.D., McCarty, D.R., Divisions of labor in the thiamin biosynthetic pathway among organs of maize. Front Plant Sci 5 (2014), 1–11 This study reports divergent expression pattern of thiamin biosynthesis, salvage, and transport genes among organs of maize, and highlights different strategies for thiamin acquisition among organs, a concept that the authors introduce as divisions of labor.
-
(2014)
Front Plant Sci
, vol.5
, pp. 1-11
-
-
Guan, J.C.1
Hasnain, G.2
Garrett, T.J.3
Chase, C.D.4
Gregory, J.F.5
Hanson, A.D.6
McCarty, D.R.7
-
14
-
-
37649011175
-
Vitamin B1 biosynthesis in plants requires the essential iron sulfur cluster protein, THIC
-
14 Raschke, M., Burkle, L., Muller, N., Nunes-Nesi, A., Fernie, A.R., Arigoni, D., Amrhein, N., Fitzpatrick, T.B., Vitamin B1 biosynthesis in plants requires the essential iron sulfur cluster protein, THIC. Proc Natl Acad Sci U S A 104 (2007), 19637–19642.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 19637-19642
-
-
Raschke, M.1
Burkle, L.2
Muller, N.3
Nunes-Nesi, A.4
Fernie, A.R.5
Arigoni, D.6
Amrhein, N.7
Fitzpatrick, T.B.8
-
15
-
-
43049143574
-
AtTHIC, a gene involved in thiamine biosynthesis in Arabidopsis thaliana
-
15 Kong, D., Zhu, Y., Wu, H., Cheng, X., Liang, H., Ling, H.Q., AtTHIC, a gene involved in thiamine biosynthesis in Arabidopsis thaliana. Cell Res 18 (2008), 566–576.
-
(2008)
Cell Res
, vol.18
, pp. 566-576
-
-
Kong, D.1
Zhu, Y.2
Wu, H.3
Cheng, X.4
Liang, H.5
Ling, H.Q.6
-
16
-
-
37849045636
-
Riboswitch control of gene expression in plants by splicing and alternative 3’ end processing of mRNAs
-
16 Wachter, A., Tunc-Ozdemir, M., Grove, B.C., Green, P.J., Shintani, D.K., Breaker, R.R., Riboswitch control of gene expression in plants by splicing and alternative 3’ end processing of mRNAs. Plant Cell 19 (2007), 3437–3450.
-
(2007)
Plant Cell
, vol.19
, pp. 3437-3450
-
-
Wachter, A.1
Tunc-Ozdemir, M.2
Grove, B.C.3
Green, P.J.4
Shintani, D.K.5
Breaker, R.R.6
-
17
-
-
85011940612
-
Riboswitch-mediated control of gene expression in eukaryotes
-
17 Wachter, A., Riboswitch-mediated control of gene expression in eukaryotes. RNA Biol 7 (2010), 1–9.
-
(2010)
RNA Biol
, vol.7
, pp. 1-9
-
-
Wachter, A.1
-
18
-
-
36248989143
-
Riboswitch-dependent gene regulation and its evolution in the plant kingdom
-
18 Bocobza, S., Adato, A., Mandel, T., Shapira, M., Nudler, E., Aharoni, A., Riboswitch-dependent gene regulation and its evolution in the plant kingdom. Genes Dev 21 (2007), 2874–2879.
-
(2007)
Genes Dev
, vol.21
, pp. 2874-2879
-
-
Bocobza, S.1
Adato, A.2
Mandel, T.3
Shapira, M.4
Nudler, E.5
Aharoni, A.6
-
19
-
-
0038136962
-
Metabolite-binding RNA domains are present in the genes of eukaryotes
-
19 Sudarsan, N., Barrick, J.E., Breaker, R.R., Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9 (2003), 644–647.
-
(2003)
RNA
, vol.9
, pp. 644-647
-
-
Sudarsan, N.1
Barrick, J.E.2
Breaker, R.R.3
-
20
-
-
53149095767
-
Switching the light on plant riboswitches
-
20 Bocobza, S.E., Aharoni, A., Switching the light on plant riboswitches. Trends Plant Sci 13 (2008), 526–533.
-
(2008)
Trends Plant Sci
, vol.13
, pp. 526-533
-
-
Bocobza, S.E.1
Aharoni, A.2
-
21
-
-
0030209451
-
Identification of agthi1, whose product is involved in biosynthesis of the thiamine precursor thiazole, in actinorhizal nodules of Alnus glutinosa
-
21 Ribeiro, A., Praekelt, U., Akkermans, A.D., Meacock, P.A., van Kammen, A., Bisseling, T., Pawlowski, K., Identification of agthi1, whose product is involved in biosynthesis of the thiamine precursor thiazole, in actinorhizal nodules of Alnus glutinosa. Plant J 10 (1996), 361–368.
-
(1996)
Plant J
, vol.10
, pp. 361-368
-
-
Ribeiro, A.1
Praekelt, U.2
Akkermans, A.D.3
Meacock, P.A.4
van Kammen, A.5
Bisseling, T.6
Pawlowski, K.7
-
22
-
-
33947204418
-
Biosynthesis of thiamin thiazole in eukaryotes: conversion of NAD to an advanced intermediate
-
22 Chatterjee, A., Jurgenson, C.T., Schroeder, F.C., Ealick, S.E., Begley, T.P., Biosynthesis of thiamin thiazole in eukaryotes: conversion of NAD to an advanced intermediate. J Am Chem Soc 129 (2007), 2914–2922.
-
(2007)
J Am Chem Soc
, vol.129
, pp. 2914-2922
-
-
Chatterjee, A.1
Jurgenson, C.T.2
Schroeder, F.C.3
Ealick, S.E.4
Begley, T.P.5
-
23
-
-
50249154198
-
Biosynthesis of the thiamin-thiazole in eukaryotes: identification of a thiazole tautomer intermediate
-
23 Chatterjee, A., Schroeder, F.C., Jurgenson, C.T., Ealick, S.E., Begley, T.P., Biosynthesis of the thiamin-thiazole in eukaryotes: identification of a thiazole tautomer intermediate. J Am Chem Soc 130 (2008), 11394–11398.
-
(2008)
J Am Chem Soc
, vol.130
, pp. 11394-11398
-
-
Chatterjee, A.1
Schroeder, F.C.2
Jurgenson, C.T.3
Ealick, S.E.4
Begley, T.P.5
-
24
-
-
80055020244
-
Saccharomyces cerevisiae THI4p is a suicide thiamine thiazole synthase
-
542-U146
-
24 Chatterjee, A., Abeydeera, N.D., Bale, S., Pai, P.J., Dorrestein, P.C., Russell, D.H., Ealick, S.E., Begley, T.P., Saccharomyces cerevisiae THI4p is a suicide thiamine thiazole synthase. Nature, 478, 2011 542-U146.
-
(2011)
Nature
, vol.478
-
-
Chatterjee, A.1
Abeydeera, N.D.2
Bale, S.3
Pai, P.J.4
Dorrestein, P.C.5
Russell, D.H.6
Ealick, S.E.7
Begley, T.P.8
-
25
-
-
36749024726
-
Molecular characterization of the thi3 gene involved in thiamine biosynthesis in Zea mays: cDNA sequence and enzymatic and structural properties of the recombinant bifunctional protein with 4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate) kinase and thiamine monophosphate synthase activities
-
25 Rapala-Kozik, M., Olczak, M., Ostrowska, K., Starosta, A., Kozik, A., Molecular characterization of the thi3 gene involved in thiamine biosynthesis in Zea mays: cDNA sequence and enzymatic and structural properties of the recombinant bifunctional protein with 4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate) kinase and thiamine monophosphate synthase activities. Biochem J 408 (2007), 149–159.
-
(2007)
Biochem J
, vol.408
, pp. 149-159
-
-
Rapala-Kozik, M.1
Olczak, M.2
Ostrowska, K.3
Starosta, A.4
Kozik, A.5
-
26
-
-
33847139467
-
Determination of the genetic, molecular, and biochemical basis of the Arabidopsis thaliana thiamin auxotroph th1
-
26 Ajjawi, I., Tsegaye, Y., Shintani, D., Determination of the genetic, molecular, and biochemical basis of the Arabidopsis thaliana thiamin auxotroph th1. Arch Biochem Biophys 459 (2007), 107–114.
-
(2007)
Arch Biochem Biophys
, vol.459
, pp. 107-114
-
-
Ajjawi, I.1
Tsegaye, Y.2
Shintani, D.3
-
27
-
-
84955496094
-
Bacterial and plant HAD enzymes catalyze a missing phosphatase step in thiamin diphosphate biosynthesis
-
27 Hasnain, G., Roje, S., Sa, N., Zallot, R., Ziemak, M.J., De Crecy-Lagard, V., Gregory, J.F., Hanson, A.D., Bacterial and plant HAD enzymes catalyze a missing phosphatase step in thiamin diphosphate biosynthesis. Biochem J 473 (2016), 157–166.
-
(2016)
Biochem J
, vol.473
, pp. 157-166
-
-
Hasnain, G.1
Roje, S.2
Sa, N.3
Zallot, R.4
Ziemak, M.J.5
De Crecy-Lagard, V.6
Gregory, J.F.7
Hanson, A.D.8
-
28
-
-
34848895965
-
Thiamin pyrophosphokinase is required for thiamin cofactor activation in Arabidopsis
-
28 Ajjawi, I., Rodriguez Milla, M.A., Cushman, J., Shintani, D.K., Thiamin pyrophosphokinase is required for thiamin cofactor activation in Arabidopsis. Plant Mol Biol 65 (2007), 151–162.
-
(2007)
Plant Mol Biol
, vol.65
, pp. 151-162
-
-
Ajjawi, I.1
Rodriguez Milla, M.A.2
Cushman, J.3
Shintani, D.K.4
-
29
-
-
84864668636
-
Identification of mitochondrial thiamin diphosphate carriers from Arabidopsis and maize
-
29 Frelin, O., Agrimi, G., Laera, V.L., Castegna, A., Richardson, L.G.L., Mullen, R.T., Lerma-Ortiz, C., Palmieri, F., Hanson, A.D., Identification of mitochondrial thiamin diphosphate carriers from Arabidopsis and maize. Funct Integr Genom 12 (2012), 317–326.
-
(2012)
Funct Integr Genom
, vol.12
, pp. 317-326
-
-
Frelin, O.1
Agrimi, G.2
Laera, V.L.3
Castegna, A.4
Richardson, L.G.L.5
Mullen, R.T.6
Lerma-Ortiz, C.7
Palmieri, F.8
Hanson, A.D.9
-
30
-
-
84874548158
-
Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis
-
30 Bocobza, S.E., Malitsky, S., Araujo, W.L., Nunes-Nesi, A., Meir, S., Shapira, M., Fernie, A.R., Aharoni, A., Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis. Plant Cell 25 (2013), 288–307.
-
(2013)
Plant Cell
, vol.25
, pp. 288-307
-
-
Bocobza, S.E.1
Malitsky, S.2
Araujo, W.L.3
Nunes-Nesi, A.4
Meir, S.5
Shapira, M.6
Fernie, A.R.7
Aharoni, A.8
-
32
-
-
80051566236
-
Biosynthesis of NAD and its manipulation in plants
-
F. Rebeille R. Douce Academic Press Ltd-Elsevier Science Ltd
-
32 Noctor, G., Hager, J., Li, S.C., Biosynthesis of NAD and its manipulation in plants. Rebeille, F., Douce, R., (eds.) Biosynthesis of Vitamins in Plants: Vitamins A, B1, B2, B3, B5, Pt A: Vitamins A, B1, B2, B3, B5., 2011, Academic Press Ltd-Elsevier Science Ltd, 153–201.
-
(2011)
Biosynthesis of Vitamins in Plants: Vitamins A, B1, B2, B3, B5, Pt A: Vitamins A, B1, B2, B3, B5.
, pp. 153-201
-
-
Noctor, G.1
Hager, J.2
Li, S.C.3
-
33
-
-
0037422610
-
Proteomics gives insight into the regulatory function of chloroplast thioredoxins
-
33 Balmer, Y., Koller, A., del Val, G., Manieri, W., Schurmann, P., Buchanan, B.B., Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc Natl Acad Sci U S A 100 (2003), 370–375.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 370-375
-
-
Balmer, Y.1
Koller, A.2
del Val, G.3
Manieri, W.4
Schurmann, P.5
Buchanan, B.B.6
-
34
-
-
2442498463
-
New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii
-
34 Lemaire, S.D., Guillon, B., Le Marechal, P., Keryer, E., Miginiac-Maslow, M., Decottignies, P., New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 101 (2004), 7475–7480.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 7475-7480
-
-
Lemaire, S.D.1
Guillon, B.2
Le Marechal, P.3
Keryer, E.4
Miginiac-Maslow, M.5
Decottignies, P.6
-
36
-
-
84925725808
-
Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase
-
36 Fenwick, M.K., Mehta, A.P., Zhang, Y., Abdelwahed, S.H., Begley, T.P., Ealick, S.E., Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase. Nature Communications, 2015, 6.
-
(2015)
Nature Communications
, pp. 6
-
-
Fenwick, M.K.1
Mehta, A.P.2
Zhang, Y.3
Abdelwahed, S.H.4
Begley, T.P.5
Ealick, S.E.6
-
37
-
-
0005784354
-
14C-compounds from maternal tissue into maize seeds grown in vitro
-
14C-compounds from maternal tissue into maize seeds grown in vitro. Plant Physiol 67 (1981), 429–432.
-
(1981)
Plant Physiol
, vol.67
, pp. 429-432
-
-
Shimamoto, K.1
Nelson, O.E.2
-
38
-
-
84964858946
-
1) is concomitant with that of polyamines
-
This work identifies for the first time a transporter that mediates thiamin transport into the phloem and its function in shoot-to-root partitioning of thiamin.
-
1) is concomitant with that of polyamines. Plant Physiol 171 (2016), 542–553 This work identifies for the first time a transporter that mediates thiamin transport into the phloem and its function in shoot-to-root partitioning of thiamin.
-
(2016)
Plant Physiol
, vol.171
, pp. 542-553
-
-
Martinis, J.1
Gas-Pascual, E.2
Szydlowski, N.3
Crevecoeur, M.4
Gisler, A.5
Burkle, L.6
Fitzpatrick, T.B.7
-
39
-
-
85009754203
-
‘Nothing of chemistry disappears in biology’: the Top 30 damage-prone endogenous metabolites
-
The authors combined information from the biochemical litterature, from cheminformatics, and from genome-scale metabolic models to define a ‘Top 30’ list of metabolites that are prone to chemical damage. Thiamin is included in this list.
-
39• Lerma-Ortiz, C., Jeffryes, J.G., Cooper, A.J.L., Niehaus, T.D., Thamm, A.M.K., Frelin, O., Aunins, T., Fiehn, O., de Crecy-Lagard, V., Henry, C.S., et al. ‘Nothing of chemistry disappears in biology’: the Top 30 damage-prone endogenous metabolites. Biochem Soc Trans 44 (2016), 961–971 The authors combined information from the biochemical litterature, from cheminformatics, and from genome-scale metabolic models to define a ‘Top 30’ list of metabolites that are prone to chemical damage. Thiamin is included in this list.
-
(2016)
Biochem Soc Trans
, vol.44
, pp. 961-971
-
-
Lerma-Ortiz, C.1
Jeffryes, J.G.2
Cooper, A.J.L.3
Niehaus, T.D.4
Thamm, A.M.K.5
Frelin, O.6
Aunins, T.7
Fiehn, O.8
de Crecy-Lagard, V.9
Henry, C.S.10
-
40
-
-
84968813917
-
Metabolite damage and metabolite damage control in plants
-
S.S. Merchant An excellent review on metabolite damage and metabolite damage control mechanisms in plants.
-
40• Hanson, A.D., Henry, C.S., Fiehn, O., de Crecy-Lagard, V., Metabolite damage and metabolite damage control in plants. Merchant, S.S., (eds.) Annual Review of Plant Biology, Vol 67. Annual Reviews, 2016, 131–152 An excellent review on metabolite damage and metabolite damage control mechanisms in plants.
-
(2016)
Annual Review of Plant Biology, Vol 67. Annual Reviews
, pp. 131-152
-
-
Hanson, A.D.1
Henry, C.S.2
Fiehn, O.3
de Crecy-Lagard, V.4
-
41
-
-
84872715396
-
Metabolite damage and its repair or pre-emption
-
41 Linster, C.L., Van Schaftingen, E., Hanson, A.D., Metabolite damage and its repair or pre-emption. Nat Chem Biol 9 (2013), 72–80.
-
(2013)
Nat Chem Biol
, vol.9
, pp. 72-80
-
-
Linster, C.L.1
Van Schaftingen, E.2
Hanson, A.D.3
-
42
-
-
84883313454
-
A cross-kingdom Nudix enzyme that pre-empts damage in thiamin metabolism
-
42 Goyer, A., Hasnain, G., Frelin, O., Ralat, M.A., Gregory, J.F., Hanson, A.D., A cross-kingdom Nudix enzyme that pre-empts damage in thiamin metabolism. Biochem J 454 (2013), 533–542.
-
(2013)
Biochem J
, vol.454
, pp. 533-542
-
-
Goyer, A.1
Hasnain, G.2
Frelin, O.3
Ralat, M.A.4
Gregory, J.F.5
Hanson, A.D.6
-
43
-
-
84907015131
-
Salvage of the thiamin pyrimidine moiety by plant TenA proteins lacking an active-site cysteine
-
43 Zallot, R., Yazdani, M., Goyer, A., Ziemak, M.J., Guan, J.C., McCarty, D.R., de Crecy-Lagard, V., Gerdes, S., Garrett, T.J., Benach, J., et al. Salvage of the thiamin pyrimidine moiety by plant TenA proteins lacking an active-site cysteine. Biochem J 463 (2014), 145–155.
-
(2014)
Biochem J
, vol.463
, pp. 145-155
-
-
Zallot, R.1
Yazdani, M.2
Goyer, A.3
Ziemak, M.J.4
Guan, J.C.5
McCarty, D.R.6
de Crecy-Lagard, V.7
Gerdes, S.8
Garrett, T.J.9
Benach, J.10
-
44
-
-
84885181135
-
Identification of the thiamin salvage enzyme thiazole kinase in Arabidopsis and maize
-
44 Yazdani, M., Zallot, R., Tunc-Ozdemir, M., de Crecy-Lagard, V., Shintani, D.K., Hanson, A.D., Identification of the thiamin salvage enzyme thiazole kinase in Arabidopsis and maize. Phytochemistry 94 (2013), 68–73.
-
(2013)
Phytochemistry
, vol.94
, pp. 68-73
-
-
Yazdani, M.1
Zallot, R.2
Tunc-Ozdemir, M.3
de Crecy-Lagard, V.4
Shintani, D.K.5
Hanson, A.D.6
-
45
-
-
0011130242
-
Occurrence of thiamine-binding proteins in plant seeds
-
45 Mitsunaga, T., Shimizu, M., Iwashima, A., Occurrence of thiamine-binding proteins in plant seeds. J Plant Physiol 124 (1986), 177–180.
-
(1986)
J Plant Physiol
, vol.124
, pp. 177-180
-
-
Mitsunaga, T.1
Shimizu, M.2
Iwashima, A.3
-
46
-
-
0000176928
-
Accumulation of thiamine and thiamine-binding protein during development of rice seed
-
46 Shimizu, M., Mitsunaga, T., Inaba, K., Yoshida, T., Iwashima, A., Accumulation of thiamine and thiamine-binding protein during development of rice seed. J Plant Physiol 137 (1990), 123–124.
-
(1990)
J Plant Physiol
, vol.137
, pp. 123-124
-
-
Shimizu, M.1
Mitsunaga, T.2
Inaba, K.3
Yoshida, T.4
Iwashima, A.5
-
47
-
-
0003173220
-
A possible role for thiamine-binding protein in the germination of rice seed
-
47 Mitsunaga, T., Shimizu, M., Iwashima, A., A possible role for thiamine-binding protein in the germination of rice seed. J Plant Physiol 130 (1987), 279–284.
-
(1987)
J Plant Physiol
, vol.130
, pp. 279-284
-
-
Mitsunaga, T.1
Shimizu, M.2
Iwashima, A.3
-
48
-
-
0344927788
-
Change of thiamin-binding protein and thiamin levels during seed maturation and germination in sesame
-
48 Watanabe, K., Takahashi, H., Ampo, M., Mitsunaga, T., Change of thiamin-binding protein and thiamin levels during seed maturation and germination in sesame. Plant Physiol Biochem 41 (2003), 973–976.
-
(2003)
Plant Physiol Biochem
, vol.41
, pp. 973-976
-
-
Watanabe, K.1
Takahashi, H.2
Ampo, M.3
Mitsunaga, T.4
-
49
-
-
4544359557
-
Accumulation and degradation of thiamin-binding protein and level of thiamin in wheat seeds during seed maturation and germination
-
49 Watanabe, K., Nishida, N., Adachi, T., Ueda, M., Mitsunaga, T., Kawamura, Y., Accumulation and degradation of thiamin-binding protein and level of thiamin in wheat seeds during seed maturation and germination. Biosci Biotechnol Biochem 68 (2004), 1243–1248.
-
(2004)
Biosci Biotechnol Biochem
, vol.68
, pp. 1243-1248
-
-
Watanabe, K.1
Nishida, N.2
Adachi, T.3
Ueda, M.4
Mitsunaga, T.5
Kawamura, Y.6
-
50
-
-
0019253496
-
Presence of a thiamine-binding protein in rice bran
-
50 Nishino, A., Nishino, H., Iwashima, A., Presence of a thiamine-binding protein in rice bran. J Nutr Sci Vitaminol (Tokyo) 26 (1980), 415–418.
-
(1980)
J Nutr Sci Vitaminol (Tokyo)
, vol.26
, pp. 415-418
-
-
Nishino, A.1
Nishino, H.2
Iwashima, A.3
-
51
-
-
0021381114
-
Purification and some properties of thiamine-binding protein from rice bran
-
51 Nishimura, H., Uehara, Y., Sempuku, K., Iwashima, A., Purification and some properties of thiamine-binding protein from rice bran. J Nutr Sci Vitaminol (Tokyo) 30 (1984), 1–10.
-
(1984)
J Nutr Sci Vitaminol (Tokyo)
, vol.30
, pp. 1-10
-
-
Nishimura, H.1
Uehara, Y.2
Sempuku, K.3
Iwashima, A.4
-
52
-
-
84928045239
-
Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm
-
The authors developed a new evidence-based genome-scale reconstruction method to build organ specific metabolic model for the maize leaf, and tissue specific metabolic models for maize embryo and endosperm cells.
-
52• Seaver, S.M.D., Bradbury, L.M.T., Frelin, O., Zarecki, R., Ruppin, E., Hanson, A.D., Henry, C.S., Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm. Front Plant Sci, 2015, 6 The authors developed a new evidence-based genome-scale reconstruction method to build organ specific metabolic model for the maize leaf, and tissue specific metabolic models for maize embryo and endosperm cells.
-
(2015)
Front Plant Sci
, pp. 6
-
-
Seaver, S.M.D.1
Bradbury, L.M.T.2
Frelin, O.3
Zarecki, R.4
Ruppin, E.5
Hanson, A.D.6
Henry, C.S.7
|