-
2
-
-
75149176174
-
Ensemble-based classifiers
-
L. Rokach, "Ensemble-based classifiers," ArtijicialIntelligence Review, vol. 33, no. 1-2, pp. 1-39, 2010.
-
(2010)
ArtijicialIntelligence Review
, vol.33
, Issue.1-2
, pp. 1-39
-
-
Rokach, L.1
-
3
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
Z.-H. Zhou, J. Wu, and W Tang, "Ensembling neural networks: many could be better than all," Artijicial intelligence, vol. 137, no. I, pp. 239-263, 2002.
-
(2002)
Artijicial Intelligence
, vol.137
, Issue.1
, pp. 239-263
-
-
Zhou, Z.-H.1
Wu, J.2
Tang, W.3
-
4
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging predictors," Machine learning, vol. 24, no. 2, pp. 123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
6
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Y Freund, "Boosting a weak learning algorithm by majority," Iriformation and computation, vol. 121, no. 2, pp. 256-285, 1995.
-
(1995)
Iriformation and Computation
, vol.121
, Issue.2
, pp. 256-285
-
-
Freund, Y.1
-
7
-
-
84878919540
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. Hinton, "Imagenet classification with deep convolutional neural networks," in Advances in Neural Information Processing Systems 25, 2012, pp. 1106-1114.
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 1106-1114
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
8
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
9
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
D. Erhan, Y Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio, "Why does unsupervised pre-training help deep learning" The Journal of Machine Learning Research, vol. 11, pp. 625-660, 2010.
-
(2010)
The Journal of Machine Learning Research
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.-A.4
Vincent, P.5
Bengio, S.6
-
10
-
-
84867720412
-
-
arXiv preprint arXiv:1207. 0580
-
G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, "Improving neural networks by preventing co-adaptation of feature detectors," arXiv preprint arXiv:1207. 0580, 2012.
-
(2012)
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
11
-
-
69349090197
-
Learning deep architectures for ai
-
Y Bengio, "Learning deep architectures for ai," Foundations and trends@ in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.
-
(2009)
Foundations and Trends@ in Machine Learning
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
12
-
-
59449087310
-
Exploring strategies for training deep neural networks
-
H. Larochelle, Y Bengio, J. Louradour, and P. Lamblin, "Exploring strategies for training deep neural networks," The Journal of Machine Learning Research, vol. 10, pp. 1-40, 2009.
-
(2009)
The Journal of Machine Learning Research
, vol.10
, pp. 1-40
-
-
Larochelle, H.1
Bengio, Y.2
Louradour, J.3
Lamblin, P.4
-
13
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y-W Teh, "A fast learning algorithm for deep belief nets," Neural computation, vol. 18, no. 7, pp. 1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
14
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Y Bengio, P Lamblin, D. P opovici, and H. Larochelle, "Greedy layer-wise training of deep networks," Advances in neural iriformation processing systems, vol. 19, p. 153, 2007.
-
(2007)
Advances in Neural Iriformation Processing Systems
, vol.19
, pp. 153
-
-
Bengio, Y.1
Lamblin, P.2
Opovici, D.P.3
Larochelle, H.4
-
15
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
P Vincent, H. Larochelle, L. Lajoie, Y Bengio, and P-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion," The Journal of Machine Learning Research, vol. 9999, pp. 3371-3408, 2010.
-
(2010)
The Journal of Machine Learning Research
, vol.9999
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, L.3
Bengio, Y.4
Manzagol, P.-A.5
-
17
-
-
79961226155
-
The difficulty of training deep architectures and the effect of unsupervised pre-training
-
D. Erhan, P-A. Manzagol, Y Bengio, S. Bengio, and P. Vincent, "The difficulty of training deep architectures and the effect of unsupervised pre-training," in International Conference on ArtijicialIntelligence and Statistics, 2009, pp. 153-160.
-
(2009)
International Conference on ArtijicialIntelligence and Statistics
, pp. 153-160
-
-
Erhan, D.1
Manzagol, P.-A.2
Bengio, Y.3
Bengio, S.4
Vincent, P.5
-
18
-
-
0040428297
-
Prediction intervals for artificial neural networks
-
J. G. Hwang and A. A. Ding, "Prediction intervals for artificial neural networks," Journal of the American Statistical Association, vol. 92, no. 438, pp. 748-757, 1997.
-
(1997)
Journal of the American Statistical Association
, vol.92
, Issue.438
, pp. 748-757
-
-
Hwang, J.G.1
Ding, A.A.2
-
19
-
-
80052409097
-
Comprehensive review of neural network-based prediction intervals and new advances
-
A. Khosravi, S. Nahavandi, D. Creighton, and A. F. Atiya, "Comprehensive review of neural network-based prediction intervals and new advances," Neural Networks, IEEE Transactions on, vol. 22, no. 9, pp. 1341-1356, 2011.
-
(2011)
Neural Networks, IEEE Transactions on
, vol.22
, Issue.9
, pp. 1341-1356
-
-
Khosravi, A.1
Nahavandi, S.2
Creighton, D.3
Atiya, A.F.4
-
20
-
-
84890527827
-
Improving deep neural networks for lvcsr using rectified linear units and dropout
-
G. E. Dahl, T. N. Sainath, and G. E. Hinton, "Improving deep neural networks for lvcsr using rectified linear units and dropout," in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on. IEEE, 2013, pp. 8609-8613.
-
(2013)
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference On. IEEE
, pp. 8609-8613
-
-
Dahl, G.E.1
Sainath, T.N.2
Hinton, G.E.3
-
22
-
-
84988337434
-
U-air: When urban air quality inference meets big data
-
Y Zheng, F. Liu, and H.-P. Hsieh, "U-air: when urban air quality inference meets big data," in Proceedings of the i9th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2013, pp. 1436-1444.
-
(2013)
Proceedings of the i9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM
, pp. 1436-1444
-
-
Zheng, Y.1
Liu, F.2
Hsieh, H.-P.3
-
23
-
-
84907437649
-
-
MSR-TR-2014-40, Tech. Rep.
-
Y Zheng, X. Chen, Q. Jin, Y Chen, X. Qu, X. Liu, E. Chang, W-Y Ma, Y Rui, and W Sun, "A cloud-based knowledge discovery system for monitoring fine-grained air quality," MSR-TR-2014-40, Tech. Rep., 2014.
-
(2014)
A Cloud-based Knowledge Discovery System for Monitoring Fine-grained Air Quality
-
-
Zheng, Y.1
Chen, X.2
Jin, Q.3
Chen, Y.4
Qu, X.5
Liu, X.6
Chang, E.7
Ma, W.-Y.8
Rui, Y.9
Sun, W.10
-
24
-
-
80053460450
-
Contractive auto-encoders: Explicit invariance during feature extraction
-
S. Rifai, P Vincent, X. Muller, X. Glorot, and Y Bengio, "Contractive auto-encoders: Explicit invariance during feature extraction," in Proceedings of the 28th International Conference on Machine Learning (ICML-ll), 2011, pp. 833-840
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-ll)
, pp. 833-840
-
-
Rifai, S.1
Vincent, P.2
Muller, X.3
Glorot, X.4
Bengio, Y.5
|