메뉴 건너뛰기




Volumn 38, Issue , 2016, Pages 1-12

Ensemble of deep neural networks using acoustic environment classification for statistical model-based voice activity detection

Author keywords

Acoustic environment classification; Deep neural network; Ensemble; Statistical model; Voice activity detection

Indexed keywords

ACOUSTIC NOISE; ALGORITHMS; PROBABILITY; STATISTICS; SUPPORT VECTOR MACHINES;

EID: 84951099137     PISSN: 08852308     EISSN: 10958363     Source Type: Journal    
DOI: 10.1016/j.csl.2015.11.003     Document Type: Article
Times cited : (41)

References (23)
  • 2
    • 0035445888 scopus 로고    scopus 로고
    • Speech enhancement: New approaches to soft decision
    • J.-H. Chang, and N.S. Kim Speech enhancement: new approaches to soft decision IEICE Trans. Syst. Inf. E84-D 9 2001 1231 1240
    • (2001) IEICE Trans. Syst. Inf. , vol.84 E-D , Issue.9 , pp. 1231-1240
    • Chang, J.-H.1    Kim, N.S.2
  • 3
    • 84155164746 scopus 로고    scopus 로고
    • On using environment classification for statistical model-based speech enhancement
    • J.-H. Choi, and J.-H. Chang On using environment classification for statistical model-based speech enhancement Speech Commun. 54 2012 477 490
    • (2012) Speech Commun. , vol.54 , pp. 477-490
    • Choi, J.-H.1    Chang, J.-H.2
  • 4
    • 0021645331 scopus 로고
    • Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator
    • Y. Ephraim, and D. Malah Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator IEEE Trans. Acoust. Speech Signal Process. 32 6 1984 1109 1121
    • (1984) IEEE Trans. Acoust. Speech Signal Process. , vol.32 , Issue.6 , pp. 1109-1121
    • Ephraim, Y.1    Malah, D.2
  • 6
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. Hinton, and R. Salakhutdinov Reducing the dimensionality of data with neural networks Science 313 5786 2006 504 507
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 7
    • 33745805403 scopus 로고    scopus 로고
    • A faster learning algorithm for deep belief nets
    • G. Hinton, S. Osindero, and T. Teh A faster learning algorithm for deep belief nets Neural Comput. 18 7 2006 1527 1554
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, T.3
  • 9
    • 0038669544 scopus 로고    scopus 로고
    • The aurora experimental framework for the performance evaluation of speech recognition systems under noisy conditions
    • H. Hirsch, and D. Pearce The aurora experimental framework for the performance evaluation of speech recognition systems under noisy conditions Proc. ASR 2000
    • (2000) Proc. ASR
    • Hirsch, H.1    Pearce, D.2
  • 10
    • 65549106422 scopus 로고    scopus 로고
    • Statistical model-based voice activity detection using support vector machine
    • Q.-H. Jo, J.-H. Chang, J. Shin, and N.S. Kim Statistical model-based voice activity detection using support vector machine IET Signal Process. 3 3 2009 205 210
    • (2009) IET Signal Process. , vol.3 , Issue.3 , pp. 205-210
    • Jo, Q.-H.1    Chang, J.-H.2    Shin, J.3    Kim, N.S.4
  • 11
    • 67650137747 scopus 로고    scopus 로고
    • Discriminative weight training for a statistical model-based voice activity detection
    • S.I. Kang, Q.-H. Jo, and J.-H. Chang Discriminative weight training for a statistical model-based voice activity detection IEEE Signal Process. Lett. 15 2008 170 173
    • (2008) IEEE Signal Process. Lett. , vol.15 , pp. 170-173
    • Kang, S.I.1    Jo, Q.-H.2    Chang, J.-H.3
  • 12
    • 56449086627 scopus 로고    scopus 로고
    • Sparse deep belief net model for visual area v2
    • H. Lee, C. Ekanadham, and A. Ng Sparse deep belief net model for visual area v2 Proc. NIPS 2007
    • (2007) Proc. NIPS
    • Lee, H.1    Ekanadham, C.2    Ng, A.3
  • 13
  • 15
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • Cambridge Press
    • J. Platt Probabilistic outputs for support vector machines and comparison to regularized likelihood methods Advances in Large Margin Classifiers 2000 Cambridge Press
    • (2000) Advances in Large Margin Classifiers
    • Platt, J.1
  • 16
    • 84906228076 scopus 로고    scopus 로고
    • Speech activity detection on YouTube using deep neural networks
    • N. Ryant, M. Liberman, and J. Yuan Speech activity detection on YouTube using deep neural networks Proc. Interspeech 2013
    • (2013) Proc. Interspeech
    • Ryant, N.1    Liberman, M.2    Yuan, J.3
  • 18
    • 0032762471 scopus 로고    scopus 로고
    • A statistical model-based voice activity detection
    • J. Sohn, N.S. Kim, and W. Sung A statistical model-based voice activity detection IEEE Signal Process. Lett. 1 6 1999 1 3
    • (1999) IEEE Signal Process. Lett. , vol.1 , Issue.6 , pp. 1-3
    • Sohn, J.1    Kim, N.S.2    Sung, W.3
  • 19
    • 0027623210 scopus 로고
    • Assessment for automatic speech recognition, II-NOISEX-92: A database and an experiment to study the effect of additive noise on speech recognition systems
    • A. Varga, and H. Steeneken Assessment for automatic speech recognition, II-NOISEX-92: a database and an experiment to study the effect of additive noise on speech recognition systems Speech Commum. 12 1993 247 251
    • (1993) Speech Commum. , vol.12 , pp. 247-251
    • Varga, A.1    Steeneken, H.2
  • 20
    • 84896537574 scopus 로고    scopus 로고
    • Wiener filtering based speech enhancement with weighted denoising auto-encoder and noise classification
    • B. Xia, and C. Bao Wiener filtering based speech enhancement with weighted denoising auto-encoder and noise classification Speech Commun. 60 2014 13 29
    • (2014) Speech Commun. , vol.60 , pp. 13-29
    • Xia, B.1    Bao, C.2
  • 21
    • 77956289831 scopus 로고    scopus 로고
    • Discriminative training for multiple observation likelihood ratio based voice activity detection
    • T. Yu, and J. Hansen Discriminative training for multiple observation likelihood ratio based voice activity detection IEEE Signal Process. Lett. 17 11 2010 897 900
    • (2010) IEEE Signal Process. Lett. , vol.17 , Issue.11 , pp. 897-900
    • Yu, T.1    Hansen, J.2
  • 22
    • 84889263385 scopus 로고    scopus 로고
    • Denoising deep neural networks based voice activity detection
    • X.-L. Zhang, and J. Wu Denoising deep neural networks based voice activity detection Proc. ICASSP 2013
    • (2013) Proc. ICASSP
    • Zhang, X.-L.1    Wu, J.2
  • 23
    • 84872300403 scopus 로고    scopus 로고
    • Deep belief networks based voice activity detection
    • X.-L. Zhang, and J. Wu Deep belief networks based voice activity detection IEEE Trans. Audio Speech Lang. Process. 21 4 2013 3371 3408
    • (2013) IEEE Trans. Audio Speech Lang. Process. , vol.21 , Issue.4 , pp. 3371-3408
    • Zhang, X.-L.1    Wu, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.