메뉴 건너뛰기




Volumn 36, Issue 19, 2016, Pages 2464-2475

Function of conserved topological regions within the Saccharomyces cerevisiae basal transcription factor TFIIH

Author keywords

[No Author keywords available]

Indexed keywords

ELAV LIKE PROTEIN 2; FUNGAL PROTEIN; SSL2 PROTEIN; TFB2 PROTEIN; TFB3 PROTEIN; TRANSCRIPTION FACTOR IIH; UNCLASSIFIED DRUG; DNA HELICASE; PROTEIN BINDING; SACCHAROMYCES CEREVISIAE PROTEIN; SSL1 PROTEIN, S CEREVISIAE; SSL2 PROTEIN, S CEREVISIAE; TFB2 PROTEIN, S CEREVISIAE; TFB3 PROTEIN, S CEREVISIAE; TRANSCRIPTION FACTOR II;

EID: 84990060959     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.00182-16     Document Type: Article
Times cited : (11)

References (47)
  • 1
    • 84861457511 scopus 로고    scopus 로고
    • TFIIH: when transcription met DNA repair
    • Compe E, Egly J-M. 2012. TFIIH: when transcription met DNA repair. Nat Rev Mol Cell Biol 13:343-354. http://dx.doi.org/10.1038/nrm3350.
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 343-354
    • Compe, E.1    Egly, J.-M.2
  • 2
    • 84888130540 scopus 로고    scopus 로고
    • Structural insights into transcription initiation by RNA polymerase II
    • Grünberg S, Hahn S. 2013. Structural insights into transcription initiation by RNA polymerase II. Trends Biochem Sci 38:603-611. http://dx.doi.org/10.1016/j.tibs.2013.09.002.
    • (2013) Trends Biochem Sci , vol.38 , pp. 603-611
    • Grünberg, S.1    Hahn, S.2
  • 3
    • 84923804845 scopus 로고    scopus 로고
    • Structural basis of transcription initiation by RNA polymerase II
    • Sainsbury S, Bernecky C, Cramer P. 2015. Structural basis of transcription initiation by RNA polymerase II. Nat Rev Mol Cell Biol 16:129-143. http://dx.doi.org/10.1038/nrm3952.
    • (2015) Nat Rev Mol Cell Biol , vol.16 , pp. 129-143
    • Sainsbury, S.1    Bernecky, C.2    Cramer, P.3
  • 4
    • 0024977414 scopus 로고
    • Five intermediate complexes in transcription initiation by RNA polymerase II
    • Buratowski S, Hahn S, Guarente L, Sharp PA. 1989. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56:549-561 http://dx.doi.org/10.1016/0092-8674(89)90578-3.
    • (1989) Cell , vol.56 , pp. 549-561
    • Buratowski, S.1    Hahn, S.2    Guarente, L.3    Sharp, P.A.4
  • 5
    • 79960377998 scopus 로고    scopus 로고
    • XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle viaCAKkinase
    • Fuss JO, Tainer JA. 2011. XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle viaCAKkinase.DNARepair 10:697-713. http://dx.doi.org/10.1016/j.dnarep.2011.04.028.
    • (2011) DNARepair , vol.10 , pp. 697-713
    • Fuss, J.O.1    Tainer, J.A.2
  • 6
    • 79960377780 scopus 로고    scopus 로고
    • A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor
    • Egly J-M, Coin F. 2011. A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair 10:714-721. http://dx.doi.org/10.1016/j.dnarep.2011.04.021.
    • (2011) DNA Repair , vol.10 , pp. 714-721
    • Egly, J.-M.1    Coin, F.2
  • 8
    • 0033010723 scopus 로고    scopus 로고
    • Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7
    • Tirode F, Busso D, Coin F, Egly JM. 1999. Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7. Mol Cell 3:87-95. http://dx.doi.org/10.1016/S1097-2765(00)80177-X.
    • (1999) Mol Cell , vol.3 , pp. 87-95
    • Tirode, F.1    Busso, D.2    Coin, F.3    Egly, J.M.4
  • 11
    • 84926049830 scopus 로고    scopus 로고
    • Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation
    • Fishburn J, Tomko E, Galburt E, Hahn S. 2015. Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation. Proc Natl Acad Sci U S A 112:3961-3966. http://dx.doi.org/10.1073/pnas.1417709112.
    • (2015) Proc Natl Acad Sci U S A , vol.112 , pp. 3961-3966
    • Fishburn, J.1    Tomko, E.2    Galburt, E.3    Hahn, S.4
  • 12
    • 84864662191 scopus 로고    scopus 로고
    • Architecture of the RNA polymerase II preinitiation complex and mechanism of ATP-dependent promoter opening
    • Grünberg S, Warfield L, Hahn S. 2012. Architecture of the RNA polymerase II preinitiation complex and mechanism of ATP-dependent promoter opening. Nat Struct Mol Biol 19:788-796. http://dx.doi.org/10.1038/nsmb.2334.
    • (2012) Nat Struct Mol Biol , vol.19 , pp. 788-796
    • Grünberg, S.1    Warfield, L.2    Hahn, S.3
  • 13
    • 81255210794 scopus 로고    scopus 로고
    • Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators
    • Hahn S, Young ET. 2011. Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 189:705-736. http://dx.doi.org/10.1534/genetics.111.127019.
    • (2011) Genetics , vol.189 , pp. 705-736
    • Hahn, S.1    Young, E.T.2
  • 14
    • 84941236883 scopus 로고    scopus 로고
    • Real-time observation of the initiation of RNA polymerase II transcription
    • Fazal FM, Meng CA, Murakami K, Kornberg RD, Block SM. 2015. Real-time observation of the initiation of RNA polymerase II transcription. Nature 525:274-277. http://dx.doi.org/10.1038/nature14882.
    • (2015) Nature , vol.525 , pp. 274-277
    • Fazal, F.M.1    Meng, C.A.2    Murakami, K.3    Kornberg, R.D.4    Block, S.M.5
  • 15
    • 0032482923 scopus 로고    scopus 로고
    • Promoter escape limits the rate of RNA polymerase II transcription and is enhanced by TFIIE, TFIIH, and ATP on negatively supercoiled DNA
    • Kugel JF, Goodrich JA. 1998. Promoter escape limits the rate of RNA polymerase II transcription and is enhanced by TFIIE, TFIIH, and ATP on negatively supercoiled DNA. Proc Natl Acad Sci U S A 95:9232-9237. http://dx.doi.org/10.1073/pnas.95.16.9232.
    • (1998) Proc Natl Acad Sci U S A , vol.95 , pp. 9232-9237
    • Kugel, J.F.1    Goodrich, J.A.2
  • 16
    • 0030740233 scopus 로고    scopus 로고
    • A role for TFIIH in controlling the activity of early RNA polymerase II elongation complexes
    • Dvir A, Conaway RC, Conaway JW. 1997. A role for TFIIH in controlling the activity of early RNA polymerase II elongation complexes. Proc Natl Acad SciUSA94:9006-9010. http://dx.doi.org/10.1073/pnas.94.17.9006.
    • (1997) Proc Natl Acad SciUSA , vol.94 , pp. 9006-9010
    • Dvir, A.1    Conaway, R.C.2    Conaway, J.W.3
  • 17
    • 25444444192 scopus 로고    scopus 로고
    • CAK-cyclin-dependent activating kinase: a key kinase in cell cycle control and a target for drugs?
    • Lolli G, Johnson LN. 2005. CAK-cyclin-dependent activating kinase: a key kinase in cell cycle control and a target for drugs? Cell Cycle 4:572-577.
    • (2005) Cell Cycle , vol.4 , pp. 572-577
    • Lolli, G.1    Johnson, L.N.2
  • 18
    • 46349091030 scopus 로고    scopus 로고
    • Nucleotide excision repair driven by the dissociation of CAK from TFIIH
    • Coin F, Oksenych V, Mocquet V, Groh S, Blattner C, Egly J-M. 2008. Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol Cell 31:9-20. http://dx.doi.org/10.1016/j.molcel.2008.04.024.
    • (2008) Mol Cell , vol.31 , pp. 9-20
    • Coin, F.1    Oksenych, V.2    Mocquet, V.3    Groh, S.4    Blattner, C.5    Egly, J.-M.6
  • 19
    • 0034264910 scopus 로고    scopus 로고
    • Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH
    • Chang WH, Kornberg RD. 2000. Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH. Cell 102:609-613. http://dx.doi.org/10.1016/S0092-8674(00)00083-0.
    • (2000) Cell , vol.102 , pp. 609-613
    • Chang, W.H.1    Kornberg, R.D.2
  • 22
    • 84875613843 scopus 로고    scopus 로고
    • Structural visualization of key steps in human transcription initiation
    • He Y, Fang J, Taatjes DJ, Nogales E. 2013. Structural visualization of key steps in human transcription initiation. Nature 495:481-486. http://dx.doi.org/10.1038/nature11991.
    • (2013) Nature , vol.495 , pp. 481-486
    • He, Y.1    Fang, J.2    Taatjes, D.J.3    Nogales, E.4
  • 24
    • 0034717308 scopus 로고    scopus 로고
    • Mechanism of ATP-dependent promoter melting by transcription factor IIH
    • Kim TK, Ebright RH, Reinberg D. 2000. Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science 288:1418-1422. http://dx.doi.org/10.1126/science.288.5470.1418.
    • (2000) Science , vol.288 , pp. 1418-1422
    • Kim, T.K.1    Ebright, R.H.2    Reinberg, D.3
  • 25
    • 33745842952 scopus 로고    scopus 로고
    • A DNA-tethered cleavage probe reveals the path for promoter DNA in the yeast preinitiation complex
    • Miller G, Hahn S. 2006. A DNA-tethered cleavage probe reveals the path for promoter DNA in the yeast preinitiation complex. Nat Struct Mol Biol 13:603-610. http://dx.doi.org/10.1038/nsmb1117.
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 603-610
    • Miller, G.1    Hahn, S.2
  • 27
    • 84971009646 scopus 로고    scopus 로고
    • Near-atomic resolution visualization of human transcription promoter opening
    • He Y, Yan C, Fang J, Inouye C, Tjian R, Ivanov I, Nogales E. 2016. Near-atomic resolution visualization of human transcription promoter opening. Nature 533:359-365. http://dx.doi.org/10.1038/nature17970.
    • (2016) Nature , vol.533 , pp. 359-365
    • He, Y.1    Yan, C.2    Fang, J.3    Inouye, C.4    Tjian, R.5    Ivanov, I.6    Nogales, E.7
  • 28
    • 0242498477 scopus 로고    scopus 로고
    • Revised subunit structure of yeast transcription factor IIH (TFIIH) and reconciliation with human TFIIH
    • Takagi Y, Komori H, Chang W-H, Hudmon A, Erdjument-Bromage H, Tempst P, Kornberg RD. 2003. Revised subunit structure of yeast transcription factor IIH (TFIIH) and reconciliation with human TFIIH. J Biol Chem 278:43897-43900. http://dx.doi.org/10.1074/jbc.C300417200.
    • (2003) J Biol Chem , vol.278 , pp. 43897-43900
    • Takagi, Y.1    Komori, H.2    Chang, W.-H.3    Hudmon, A.4    Erdjument-Bromage, H.5    Tempst, P.6    Kornberg, R.D.7
  • 29
    • 84859460616 scopus 로고    scopus 로고
    • Tfb6, a previously unidentified subunit of the general transcription factor TFIIH, facilitates dissociation of Ssl2 helicase after transcription initiation
    • Murakami K, Gibbons BJ, Davis RE, Nagai S, Liu X, Robinson PJJ, Wu T, Kaplan CD, Kornberg RD. 2012. Tfb6, a previously unidentified subunit of the general transcription factor TFIIH, facilitates dissociation of Ssl2 helicase after transcription initiation. Proc Natl Acad Sci U S A 109:4816-4821. http://dx.doi.org/10.1073/pnas.1201448109.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 4816-4821
    • Murakami, K.1    Gibbons, B.J.2    Davis, R.E.3    Nagai, S.4    Liu, X.5    Robinson, P.J.J.6    Wu, T.7    Kaplan, C.D.8    Kornberg, R.D.9
  • 31
    • 84922249668 scopus 로고    scopus 로고
    • Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex
    • Han Y, Luo J, Ranish J, Hahn S. 2014. Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex. EMBO J 33:2534-2546 http://dx.doi.org/10.15252/embj.201488638.
    • (2014) EMBO J , vol.33 , pp. 2534-2546
    • Han, Y.1    Luo, J.2    Ranish, J.3    Hahn, S.4
  • 32
    • 33645988522 scopus 로고    scopus 로고
    • Conserved XPB core structure and motifs for DNA unwinding: implications for pathway selection of transcription or excision repair
    • Fan L, Arvai AS, Cooper PK, Iwai S, Hanaoka F, Tainer JA. 2006. Conserved XPB core structure and motifs for DNA unwinding: implications for pathway selection of transcription or excision repair. Mol Cell 22:27-37. http://dx.doi.org/10.1016/j.molcel.2006.02.017.
    • (2006) Mol Cell , vol.22 , pp. 27-37
    • Fan, L.1    Arvai, A.S.2    Cooper, P.K.3    Iwai, S.4    Hanaoka, F.5    Tainer, J.A.6
  • 33
    • 0027136282 scopus 로고
    • Comparative protein modelling by satisfaction of spatial restraints
    • Sali A, Blundell TL. 1993. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779-815. http://dx.doi.org/10.1006/jmbi.1993.1626.
    • (1993) J Mol Biol , vol.234 , pp. 779-815
    • Sali, A.1    Blundell, T.L.2
  • 34
    • 0026610767 scopus 로고
    • Assessment of protein models with three-dimensional profiles
    • Lüthy R, Bowie JU, Eisenberg D. 1992. Assessment of protein models with three-dimensional profiles. Nature 356:83-85. http://dx.doi.org/10.1038/356083a0.
    • (1992) Nature , vol.356 , pp. 83-85
    • Lüthy, R.1    Bowie, J.U.2    Eisenberg, D.3
  • 36
    • 34547683177 scopus 로고    scopus 로고
    • The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex
    • Chen H-T, Warfield L, Hahn S. 2007. The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex. Nat Struct Mol Biol 14:696-703. http://dx.doi.org/10.1038/nsmb1272.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 696-703
    • Chen, H.-T.1    Warfield, L.2    Hahn, S.3
  • 38
    • 55749095055 scopus 로고    scopus 로고
    • Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3
    • Mohibullah N, Hahn S. 2008. Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3. Genes Dev 22:2994-3006. http://dx.doi.org/10.1101/gad.1724408.
    • (2008) Genes Dev , vol.22 , pp. 2994-3006
    • Mohibullah, N.1    Hahn, S.2
  • 39
    • 19544366827 scopus 로고    scopus 로고
    • Solution structure of the C-terminal domain of TFIIH P44 subunit reveals a novel type of C4C4 ring domain involved in protein-protein interactions
    • Kellenberger E, Dominguez C, Fribourg S, Wasielewski E, Moras D, Poterszman A, Boelens R, Kieffer B. 2005. Solution structure of the C-terminal domain of TFIIH P44 subunit reveals a novel type of C4C4 ring domain involved in protein-protein interactions. J Biol Chem 280: 20785-20792. http://dx.doi.org/10.1074/jbc.M412999200.
    • (2005) J Biol Chem , vol.280 , pp. 20785-20792
    • Kellenberger, E.1    Dominguez, C.2    Fribourg, S.3    Wasielewski, E.4    Moras, D.5    Poterszman, A.6    Boelens, R.7    Kieffer, B.8
  • 40
    • 84904265400 scopus 로고    scopus 로고
    • The Structure of the TFIIH p34 subunit reveals a von Willebrand factor A like fold
    • Schmitt DR, Kuper J, Elias A, Kisker C. 2014. The Structure of the TFIIH p34 subunit reveals a von Willebrand factor A like fold. PLoS One 9:e102389. http://dx.doi.org/10.1371/journal.pone.0102389.
    • (2014) PLoS One , vol.9
    • Schmitt, D.R.1    Kuper, J.2    Elias, A.3    Kisker, C.4
  • 42
    • 0030025947 scopus 로고    scopus 로고
    • Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein
    • Iyer N, Reagan MS, Wu KJ, Canagarajah B, Friedberg EC. 1996. Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein. Biochemistry 35:2157-2167. http://dx.doi.org/10.1021/bi9524124.
    • (1996) Biochemistry , vol.35 , pp. 2157-2167
    • Iyer, N.1    Reagan, M.S.2    Wu, K.J.3    Canagarajah, B.4    Friedberg, E.C.5
  • 43
    • 0034725689 scopus 로고    scopus 로고
    • Distinct regions of MAT1 regulate cdk7 kinase and TFIIH transcription activities
    • Busso D, Keriel A, Sandrock B, Poterszman A, Gileadi O, Egly JM. 2000 Distinct regions of MAT1 regulate cdk7 kinase and TFIIH transcription activities. J Biol Chem 275:22815-22823. http://dx.doi.org/10.1074/jbc.M002578200.
    • (2000) J Biol Chem , vol.275 , pp. 22815-22823
    • Busso, D.1    Keriel, A.2    Sandrock, B.3    Poterszman, A.4    Gileadi, O.5    Egly, J.M.6
  • 44
    • 33748428875 scopus 로고    scopus 로고
    • The DNA repair helicases XPD and FancJ have essential iron-sulfur domains
    • Rudolf J, Makrantoni V, Ingledew WJ, Stark MJR, White MF. 2006. The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. Mol Cell 23:801-808. http://dx.doi.org/10.1016/j.molcel.2006.07.019.
    • (2006) Mol Cell , vol.23 , pp. 801-808
    • Rudolf, J.1    Makrantoni, V.2    Ingledew, W.J.3    Stark, M.J.R.4    White, M.F.5
  • 47
    • 44149094083 scopus 로고    scopus 로고
    • XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations
    • Fan L, Fuss JO, Cheng QJ, Arvai AS, Hammel M, Roberts VA, Cooper PK, Tainer JA. 2008. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133:789-800. http://dx.doi.org/10.1016/j.cell.2008.04.030.
    • (2008) Cell , vol.133 , pp. 789-800
    • Fan, L.1    Fuss, J.O.2    Cheng, Q.J.3    Arvai, A.S.4    Hammel, M.5    Roberts, V.A.6    Cooper, P.K.7    Tainer, J.A.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.