-
1
-
-
0018578591
-
Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells
-
Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 1979, 280:339–340.
-
(1979)
Nature
, vol.280
, pp. 339-340
-
-
Hsu, M.T.1
Coca-Prados, M.2
-
2
-
-
0025976493
-
Scrambled exons
-
Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD, Kinzler KW, Vogelstein B. Scrambled exons. Cell 1991, 64:607–613.
-
(1991)
Cell
, vol.64
, pp. 607-613
-
-
Nigro, J.M.1
Cho, K.R.2
Fearon, E.R.3
Kern, S.E.4
Ruppert, J.M.5
Oliner, J.D.6
Kinzler, K.W.7
Vogelstein, B.8
-
3
-
-
84884687363
-
Cell-type specific features of circular RNA expression
-
Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression. PLoS Genet 2013, 9:e1003777.
-
(2013)
PLoS Genet
, vol.9
-
-
Salzman, J.1
Chen, R.E.2
Olsen, M.N.3
Wang, P.L.4
Brown, P.O.5
-
4
-
-
84939419124
-
Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed
-
Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 2015, 58:870–885.
-
(2015)
Mol Cell
, vol.58
, pp. 870-885
-
-
Rybak-Wolf, A.1
Stottmeister, C.2
Glazar, P.3
Jens, M.4
Pino, N.5
Giusti, S.6
Hanan, M.7
Behm, M.8
Bartok, O.9
Ashwal-Fluss, R.10
-
5
-
-
84872531655
-
Circular RNAs are abundant, conserved, and associated with ALU repeats
-
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013, 19:141–157.
-
(2013)
RNA
, vol.19
, pp. 141-157
-
-
Jeck, W.R.1
Sorrentino, J.A.2
Wang, K.3
Slevin, M.K.4
Burd, C.E.5
Liu, J.6
Marzluff, W.F.7
Sharpless, N.E.8
-
6
-
-
84908128765
-
circBase: a database for circular RNAs
-
Glazar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA 2014, 20:1666–1670.
-
(2014)
RNA
, vol.20
, pp. 1666-1670
-
-
Glazar, P.1
Papavasileiou, P.2
Rajewsky, N.3
-
7
-
-
84949976433
-
Circular RNAs in monkey muscle: age-dependent changes
-
Abdelmohsen K, Panda AC, De S, Grammatikakis I, Kim J, Ding J, Noh JH, Kim KM, Mattison JA, de Cabo R, et al. Circular RNAs in monkey muscle: age-dependent changes. Aging 2015, 7:903–910.
-
(2015)
Aging
, vol.7
, pp. 903-910
-
-
Abdelmohsen, K.1
Panda, A.C.2
De, S.3
Grammatikakis, I.4
Kim, J.5
Ding, J.6
Noh, J.H.7
Kim, K.M.8
Mattison, J.A.9
de Cabo, R.10
-
8
-
-
84956906428
-
Expanded identification and characterization of mammalian circular RNAs
-
Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol 2014, 15:409.
-
(2014)
Genome Biol
, vol.15
, pp. 409
-
-
Guo, J.U.1
Agarwal, V.2
Guo, H.3
Bartel, D.P.4
-
9
-
-
84875372911
-
Natural RNA circles function as efficient microRNA sponges
-
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature 2013, 495:384–388.
-
(2013)
Nature
, vol.495
, pp. 384-388
-
-
Hansen, T.B.1
Jensen, T.I.2
Clausen, B.H.3
Bramsen, J.B.4
Finsen, B.5
Damgaard, C.K.6
Kjems, J.7
-
10
-
-
84875369248
-
Circular RNAs are a large class of animal RNAs with regulatory potency
-
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013, 495:333–338.
-
(2013)
Nature
, vol.495
, pp. 333-338
-
-
Memczak, S.1
Jens, M.2
Elefsinioti, A.3
Torti, F.4
Krueger, J.5
Rybak, A.6
Maier, L.7
Mackowiak, S.D.8
Gregersen, L.H.9
Munschauer, M.10
-
11
-
-
84876580450
-
Molecular biology. A circuitous route to noncoding RNA
-
Wilusz JE, Sharp PA. Molecular biology. A circuitous route to noncoding RNA. Science 2013, 340:440–441.
-
(2013)
Science
, vol.340
, pp. 440-441
-
-
Wilusz, J.E.1
Sharp, P.A.2
-
12
-
-
84900322651
-
Detecting and characterizing circular RNAs
-
Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol 2014, 32:453–461.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 453-461
-
-
Jeck, W.R.1
Sharpless, N.E.2
-
13
-
-
84962703109
-
The biogenesis of nascent circular RNAs
-
Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang JL, Yang L, Chen LL. The biogenesis of nascent circular RNAs. Cell Rep 2016, 15:611–624.
-
(2016)
Cell Rep
, vol.15
, pp. 611-624
-
-
Zhang, Y.1
Xue, W.2
Li, X.3
Zhang, J.4
Chen, S.5
Zhang, J.L.6
Yang, L.7
Chen, L.L.8
-
14
-
-
84961909446
-
Expression: its potential regulation and function
-
Salzman J, Circular RNA. Expression: its potential regulation and function. Trends Genet 2016, 32:309–316.
-
(2016)
Trends Genet
, vol.32
, pp. 309-316
-
-
Salzman, J.1
Circular, R.N.A.2
-
15
-
-
84959153658
-
The biogenesis and emerging roles of circular RNAs
-
Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 2016, 17:205–211.
-
(2016)
Nat Rev Mol Cell Biol
, vol.17
, pp. 205-211
-
-
Chen, L.L.1
-
16
-
-
84907569271
-
Biogenesis of circular RNAs
-
Vicens Q, Westhof E. Biogenesis of circular RNAs. Cell 2014, 159:13–14.
-
(2014)
Cell
, vol.159
, pp. 13-14
-
-
Vicens, Q.1
Westhof, E.2
-
17
-
-
84984938864
-
Circular RNAs in cancer: novel insights into origins, properties, functions and implications
-
Li J, Yang J, Zhou P, Le Y, Zhou C, Wang S, Xu D, Lin HK, Gong Z. Circular RNAs in cancer: novel insights into origins, properties, functions and implications. Am J Cancer Res 2015, 5:472–480.
-
(2015)
Am J Cancer Res
, vol.5
, pp. 472-480
-
-
Li, J.1
Yang, J.2
Zhou, P.3
Le, Y.4
Zhou, C.5
Wang, S.6
Xu, D.7
Lin, H.K.8
Gong, Z.9
-
18
-
-
84971260404
-
Roles of circular RNAs in neurologic disease
-
Shao Y, Chen Y. Roles of circular RNAs in neurologic disease. Front Mol Neurosci 2016, 9:25.
-
(2016)
Front Mol Neurosci
, vol.9
, pp. 25
-
-
Shao, Y.1
Chen, Y.2
-
19
-
-
85013339773
-
Circular RNA biogenesis can proceed through an exon-containing lariat precursor
-
Barrett SP, Wang PL, Salzman J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. eLife 2015, 4:e07540.
-
(2015)
eLife
, vol.4
-
-
Barrett, S.P.1
Wang, P.L.2
Salzman, J.3
-
20
-
-
84911476411
-
circRNA biogenesis competes with pre-mRNA splicing
-
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 2014, 56:55–66.
-
(2014)
Mol Cell
, vol.56
, pp. 55-66
-
-
Ashwal-Fluss, R.1
Meyer, M.2
Pamudurti, N.R.3
Ivanov, A.4
Bartok, O.5
Hanan, M.6
Evantal, N.7
Memczak, S.8
Rajewsky, N.9
Kadener, S.10
-
21
-
-
84908093894
-
Short intronic repeat sequences facilitate circular RNA production
-
Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev 2014, 28:2233–2247.
-
(2014)
Genes Dev
, vol.28
, pp. 2233-2247
-
-
Liang, D.1
Wilusz, J.E.2
-
22
-
-
84907509527
-
Complementary sequence-mediated exon circularization
-
Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell 2014, 159:134–147.
-
(2014)
Cell
, vol.159
, pp. 134-147
-
-
Zhang, X.O.1
Wang, H.B.2
Zhang, Y.3
Lu, X.4
Chen, L.L.5
Yang, L.6
-
23
-
-
84920917407
-
Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals
-
Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M, Dieterich C, et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 2015, 10:170–177.
-
(2015)
Cell Rep
, vol.10
, pp. 170-177
-
-
Ivanov, A.1
Memczak, S.2
Wyler, E.3
Torti, F.4
Porath, H.T.5
Orejuela, M.R.6
Piechotta, M.7
Levanon, E.Y.8
Landthaler, M.9
Dieterich, C.10
-
24
-
-
84926520652
-
ADAR1 is required for differentiation and neural induction by regulating microRNA processing in a catalytically independent manner
-
Chen T, Xiang JF, Zhu S, Chen S, Yin QF, Zhang XO, Zhang J, Feng H, Dong R, Li XJ, et al. ADAR1 is required for differentiation and neural induction by regulating microRNA processing in a catalytically independent manner. Cell Res 2015, 25:459–476.
-
(2015)
Cell Res
, vol.25
, pp. 459-476
-
-
Chen, T.1
Xiang, J.F.2
Zhu, S.3
Chen, S.4
Yin, Q.F.5
Zhang, X.O.6
Zhang, J.7
Feng, H.8
Dong, R.9
Li, X.J.10
-
25
-
-
84924599473
-
The RNA binding protein quaking regulates formation of circRNAs
-
Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ. The RNA binding protein quaking regulates formation of circRNAs. Cell 2015, 160:1125–1134.
-
(2015)
Cell
, vol.160
, pp. 1125-1134
-
-
Conn, S.J.1
Pillman, K.A.2
Toubia, J.3
Conn, V.M.4
Salmanidis, M.5
Phillips, C.A.6
Roslan, S.7
Schreiber, A.W.8
Gregory, P.A.9
Goodall, G.J.10
-
26
-
-
84944768846
-
Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins
-
Kramer MC, Liang D, Tatomer DC, Gold B, March ZM, Cherry S, Wilusz JE. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev 2015, 29:2168–2182.
-
(2015)
Genes Dev
, vol.29
, pp. 2168-2182
-
-
Kramer, M.C.1
Liang, D.2
Tatomer, D.C.3
Gold, B.4
March, Z.M.5
Cherry, S.6
Wilusz, J.E.7
-
27
-
-
0027158771
-
Circular transcripts of the testis-determining gene Sry in adult mouse testis
-
Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P, Lovell-Badge R. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 1993, 73:1019–1030.
-
(1993)
Cell
, vol.73
, pp. 1019-1030
-
-
Capel, B.1
Swain, A.2
Nicolis, S.3
Hacker, A.4
Walter, M.5
Koopman, P.6
Goodfellow, P.7
Lovell-Badge, R.8
-
28
-
-
84915820022
-
Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation
-
Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR, Lai EC. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 2014, 9:1966–1980.
-
(2014)
Cell Rep
, vol.9
, pp. 1966-1980
-
-
Westholm, J.O.1
Miura, P.2
Olson, S.3
Shenker, S.4
Joseph, B.5
Sanfilippo, P.6
Celniker, S.E.7
Graveley, B.R.8
Lai, E.C.9
-
29
-
-
84924274183
-
Exon-intron circular RNAs regulate transcription in the nucleus
-
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2015, 22:256–264.
-
(2015)
Nat Struct Mol Biol
, vol.22
, pp. 256-264
-
-
Li, Z.1
Huang, C.2
Bao, C.3
Chen, L.4
Lin, M.5
Wang, X.6
Zhong, G.7
Yu, B.8
Hu, W.9
Dai, L.10
-
30
-
-
85034111397
-
Repetitive elements regulate circular RNA biogenesis
-
Wilusz JE. Repetitive elements regulate circular RNA biogenesis. Mob Genet Elements 2015, 5:1–7.
-
(2015)
Mob Genet Elements
, vol.5
, pp. 1-7
-
-
Wilusz, J.E.1
-
32
-
-
84964038571
-
CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs
-
Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 2016, 13:34–42.
-
(2016)
RNA Biol
, vol.13
, pp. 34-42
-
-
Dudekula, D.B.1
Panda, A.C.2
Grammatikakis, I.3
De, S.4
Abdelmohsen, K.5
Gorospe, M.6
-
33
-
-
84907405309
-
Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation
-
Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics 2014, 2014:970607.
-
(2014)
Int J Genomics
, vol.2014
, pp. 970607
-
-
Valinezhad Orang, A.1
Safaralizadeh, R.2
Kazemzadeh-Bavili, M.3
-
34
-
-
84962110904
-
The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression
-
Geng HH, Li R, Su YM, Xiao J, Pan M, Cai XX, Ji XP. The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One 2016, 11:e0151753.
-
(2016)
PLoS One
, vol.11
-
-
Geng, H.H.1
Li, R.2
Su, Y.M.3
Xiao, J.4
Pan, M.5
Cai, X.X.6
Ji, X.P.7
-
35
-
-
84904527473
-
Prognostic potential of microRNA-138 and its target mRNA PDK1 in sera for patients with non-small cell lung cancer
-
Han L, Zhang G, Zhang N, Li H, Liu Y, Fu A, Zheng Y. Prognostic potential of microRNA-138 and its target mRNA PDK1 in sera for patients with non-small cell lung cancer. Med Oncol 2014, 31:129.
-
(2014)
Med Oncol
, vol.31
, pp. 129
-
-
Han, L.1
Zhang, G.2
Zhang, N.3
Li, H.4
Liu, Y.5
Fu, A.6
Zheng, Y.7
-
36
-
-
84925583141
-
Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway
-
Li F, Zhang L, Li W, Deng J, Zheng J, An M, Lu J, Zhou Y. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway. Oncotarget 2015, 6:6001–6013.
-
(2015)
Oncotarget
, vol.6
, pp. 6001-6013
-
-
Li, F.1
Zhang, L.2
Li, W.3
Deng, J.4
Zheng, J.5
An, M.6
Lu, J.7
Zhou, Y.8
-
37
-
-
84964355812
-
Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs
-
Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 2016, 7:11215.
-
(2016)
Nat Commun
, vol.7
, pp. 11215
-
-
Zheng, Q.1
Bao, C.2
Guo, W.3
Li, S.4
Chen, J.5
Chen, B.6
Luo, Y.7
Lyu, D.8
Li, Y.9
Shi, G.10
-
38
-
-
84962076199
-
Circular RNA of cattle casein genes are highly expressed in bovine mammary gland
-
Zhang C, Wu H, Wang Y, Zhu S, Liu J, Fang X, Chen H. Circular RNA of cattle casein genes are highly expressed in bovine mammary gland. J Dairy Sci 2016, 99:4750–4760.
-
(2016)
J Dairy Sci
, vol.99
, pp. 4750-4760
-
-
Zhang, C.1
Wu, H.2
Wang, Y.3
Zhu, S.4
Liu, J.5
Fang, X.6
Chen, H.7
-
39
-
-
84938256320
-
The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells
-
Xu H, Guo S, Li W, Yu P. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 2015, 5:12453.
-
(2015)
Sci Rep
, vol.5
, pp. 12453
-
-
Xu, H.1
Guo, S.2
Li, W.3
Yu, P.4
-
40
-
-
84961687529
-
Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2
-
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 2016, 44:2846–2858.
-
(2016)
Nucleic Acids Res
, vol.44
, pp. 2846-2858
-
-
Du, W.W.1
Yang, W.2
Liu, E.3
Yang, Z.4
Dhaliwal, P.5
Yang, B.B.6
-
41
-
-
84992505143
-
Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses
-
Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, Li X, Yang BB. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 2016.
-
(2016)
Eur Heart J
-
-
Du, W.W.1
Yang, W.2
Chen, Y.3
Wu, Z.K.4
Foster, F.S.5
Yang, Z.6
Li, X.7
Yang, B.B.8
-
42
-
-
84965000033
-
Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor
-
Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res 2016, 44:1370–1383.
-
(2016)
Nucleic Acids Res
, vol.44
, pp. 1370-1383
-
-
Enuka, Y.1
Lauriola, M.2
Feldman, M.E.3
Sas-Chen, A.4
Ulitsky, I.5
Yarden, Y.6
-
43
-
-
84923102600
-
Correlation of circular RNA abundance with proliferation – exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues
-
Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, Mesteri I, Grunt TW, Zeillinger R, Pils D. Correlation of circular RNA abundance with proliferation – exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep 2015, 5:8057.
-
(2015)
Sci Rep
, vol.5
, pp. 8057
-
-
Bachmayr-Heyda, A.1
Reiner, A.T.2
Auer, K.3
Sukhbaatar, N.4
Aust, S.5
Bachleitner-Hofmann, T.6
Mesteri, I.7
Grunt, T.W.8
Zeillinger, R.9
Pils, D.10
-
44
-
-
84892382672
-
Circular RNA (circRNA) in Alzheimer's disease (AD)
-
Lukiw WJ. Circular RNA (circRNA) in Alzheimer's disease (AD). Front Genet 2013, 4:307.
-
(2013)
Front Genet
, vol.4
, pp. 307
-
-
Lukiw, W.J.1
-
45
-
-
0035787721
-
The mRNA closed-loop model: the function of PABP and PABP-interacting proteins in mRNA translation
-
Kahvejian A, Roy G, Sonenberg N. The mRNA closed-loop model: the function of PABP and PABP-interacting proteins in mRNA translation. Cold Spring Harb Symp Quant Biol 2001, 66:293–300.
-
(2001)
Cold Spring Harb Symp Quant Biol
, vol.66
, pp. 293-300
-
-
Kahvejian, A.1
Roy, G.2
Sonenberg, N.3
-
46
-
-
79952759375
-
Posttranscriptional regulation of cancer traits by HuR
-
Abdelmohsen K, Gorospe M. Posttranscriptional regulation of cancer traits by HuR. WIREs RNA 2010, 1:214–229.
-
(2010)
WIREs RNA
, vol.1
, pp. 214-229
-
-
Abdelmohsen, K.1
Gorospe, M.2
-
47
-
-
84877826875
-
Post-transcriptional control of gene expression by AUF1: mechanisms, physiological targets, and regulation
-
White EJ, Brewer G, Wilson GM. Post-transcriptional control of gene expression by AUF1: mechanisms, physiological targets, and regulation. Biochim Biophys Acta 1829, 2013:680–688.
-
(1829)
Biochim Biophys Acta
, vol.2013
, pp. 680-688
-
-
White, E.J.1
Brewer, G.2
Wilson, G.M.3
-
48
-
-
79953184710
-
A critical role for non-coding RNA GAS5 in growth arrest and rapamycin inhibition in human T-lymphocytes
-
Williams GT, Mourtada-Maarabouni M, Farzaneh F. A critical role for non-coding RNA GAS5 in growth arrest and rapamycin inhibition in human T-lymphocytes. Biochem Soc Trans 2011, 39:482–486.
-
(2011)
Biochem Soc Trans
, vol.39
, pp. 482-486
-
-
Williams, G.T.1
Mourtada-Maarabouni, M.2
Farzaneh, F.3
-
49
-
-
77958576363
-
Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes
-
Schmitz KM, Mayer C, Postepska A, Grummt I. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 2010, 24:2264–2269.
-
(2010)
Genes Dev
, vol.24
, pp. 2264-2269
-
-
Schmitz, K.M.1
Mayer, C.2
Postepska, A.3
Grummt, I.4
-
50
-
-
84884618929
-
The intronic long noncoding RNA ANRASSF1 recruits PRC2 to the RASSF1A promoter, reducing the expression of RASSF1A and increasing cell proliferation
-
Beckedorff FC, Ayupe AC, Crocci-Souza R, Amaral MS, Nakaya HI, Soltys DT, Menck CF, Reis EM, Verjovski-Almeida S. The intronic long noncoding RNA ANRASSF1 recruits PRC2 to the RASSF1A promoter, reducing the expression of RASSF1A and increasing cell proliferation. PLoS Genet 2013, 9:e1003705.
-
(2013)
PLoS Genet
, vol.9
-
-
Beckedorff, F.C.1
Ayupe, A.C.2
Crocci-Souza, R.3
Amaral, M.S.4
Nakaya, H.I.5
Soltys, D.T.6
Menck, C.F.7
Reis, E.M.8
Verjovski-Almeida, S.9
-
51
-
-
80054756754
-
Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions
-
Chu C, Qu K, Zhong FL, Artandi SE, Chang HY. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 2011, 44:667–678.
-
(2011)
Mol Cell
, vol.44
, pp. 667-678
-
-
Chu, C.1
Qu, K.2
Zhong, F.L.3
Artandi, S.E.4
Chang, H.Y.5
-
52
-
-
84922311751
-
Neighboring gene regulation by antisense long non-coding RNAs
-
Villegas VE, Zaphiropoulos PG. Neighboring gene regulation by antisense long non-coding RNAs. Int J Mol Sci 2015, 16:3251–3266.
-
(2015)
Int J Mol Sci
, vol.16
, pp. 3251-3266
-
-
Villegas, V.E.1
Zaphiropoulos, P.G.2
-
53
-
-
84875183056
-
Structure and function of long noncoding RNAs in epigenetic regulation
-
Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 2013, 20:300–307.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 300-307
-
-
Mercer, T.R.1
Mattick, J.S.2
-
55
-
-
77951901108
-
Insights into the biology of IRES elements through riboproteomic approaches
-
Pacheco A, Martinez-Salas E. Insights into the biology of IRES elements through riboproteomic approaches. J Biomed Biotechnol 2010, 2010:458927.
-
(2010)
J Biomed Biotechnol
, vol.2010
, pp. 458927
-
-
Pacheco, A.1
Martinez-Salas, E.2
-
56
-
-
0031718582
-
Circular mRNA can direct translation of extremely long repeating-sequence proteins in vivo
-
Perriman R, Ares M. Circular mRNA can direct translation of extremely long repeating-sequence proteins in vivo. RNA 1998, 4:1047–1054.
-
(1998)
RNA
, vol.4
, pp. 1047-1054
-
-
Perriman, R.1
Ares, M.2
-
57
-
-
84922708088
-
A micropeptide encoded by a putative long noncoding RNA regulates muscle performance
-
Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR, Kasaragod P, Shelton JM, Liou J, Bassel-Duby R, et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 2015, 160:595–606.
-
(2015)
Cell
, vol.160
, pp. 595-606
-
-
Anderson, D.M.1
Anderson, K.M.2
Chang, C.L.3
Makarewich, C.A.4
Nelson, B.R.5
McAnally, J.R.6
Kasaragod, P.7
Shelton, J.M.8
Liou, J.9
Bassel-Duby, R.10
-
58
-
-
84928916124
-
Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt
-
AbouHaidar MG, Venkataraman S, Golshani A, Liu BL, Ahmad T. Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt. Proc Natl Acad Sci U S A 2014, 111:14542–14547.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 14542-14547
-
-
AbouHaidar, M.G.1
Venkataraman, S.2
Golshani, A.3
Liu, B.L.4
Ahmad, T.5
-
59
-
-
0029053190
-
Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs
-
Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 1995, 268:415–417.
-
(1995)
Science
, vol.268
, pp. 415-417
-
-
Chen, C.Y.1
Sarnow, P.2
-
60
-
-
84946228509
-
5′ UTR m(6)A promotes cap-independent translation
-
Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB, Jaffrey SR. 5′ UTR m(6)A promotes cap-independent translation. Cell 2015, 163:999–1010.
-
(2015)
Cell
, vol.163
, pp. 999-1010
-
-
Meyer, K.D.1
Patil, D.P.2
Zhou, J.3
Zinoviev, A.4
Skabkin, M.A.5
Elemento, O.6
Pestova, T.V.7
Qian, S.B.8
Jaffrey, S.R.9
-
61
-
-
84945288814
-
Dynamic m(6)A mRNA methylation directs translational control of heat shock response
-
Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB. Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 2015, 526:591–594.
-
(2015)
Nature
, vol.526
, pp. 591-594
-
-
Zhou, J.1
Wan, J.2
Gao, X.3
Zhang, X.4
Jaffrey, S.R.5
Qian, S.B.6
|