-
1
-
-
84911476411
-
CircRNAbiogenesis competes with pre-mRNA splicing
-
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. 2014. circRNAbiogenesis competes with pre-mRNA splicing. Mol Cell 56: 55-66.
-
(2014)
Mol Cell
, vol.56
, pp. 55-66
-
-
Ashwal-Fluss, R.1
Meyer, M.2
Pamudurti, N.R.3
Ivanov, A.4
Bartok, O.5
Hanan, M.6
Evantal, N.7
Memczak, S.8
Rajewsky, N.9
Kadener, S.10
-
2
-
-
77952029221
-
Deciphering the splicing code
-
Barash Y, Calarco JA, Gao W, Pan Q, Wang X, Shai O, Blencowe BJ, Frey BJ. 2010. Deciphering the splicing code. Nature 465: 53-59.
-
(2010)
Nature
, vol.465
, pp. 53-59
-
-
Barash, Y.1
Calarco, J.A.2
Gao, W.3
Pan, Q.4
Wang, X.5
Shai, O.6
Blencowe, B.J.7
Frey, B.J.8
-
3
-
-
85013339773
-
Circular RNA biogenesis can proceed through an exon-containing lariat precursor
-
Barrett SP, Wang PL, Salzman J. 2015. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. eLife 4: e07540.
-
(2015)
Elife
, vol.4
-
-
Barrett, S.P.1
Wang, P.L.2
Salzman, J.3
-
4
-
-
84903903469
-
Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix
-
Brown JA, Bulkley D, Wang J, Valenstein ML, Yario TA, Steitz TA, Steitz JA. 2014. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat Struct Mol Biol 21: 633-640.
-
(2014)
Nat Struct Mol Biol
, vol.21
, pp. 633-640
-
-
Brown, J.A.1
Bulkley, D.2
Wang, J.3
Valenstein, M.L.4
Yario, T.A.5
Steitz, T.A.6
Steitz, J.A.7
-
6
-
-
84863255704
-
Evolution of SR protein and hnRNP splicing regulatory factors
-
Busch A, Hertel KJ. 2012. Evolution of SR protein and hnRNP splicing regulatory factors. Wiley Interdiscip Rev RNA 3: 1-12.
-
(2012)
Wiley Interdiscip Rev RNA
, vol.3
, pp. 1-12
-
-
Busch, A.1
Hertel, K.J.2
-
7
-
-
0036534129
-
Alternative splicing: Multiple control mechanisms and involvement in human disease
-
Caceres JF, Kornblihtt AR. 2002. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet 18: 186-193.
-
(2002)
Trends Genet
, vol.18
, pp. 186-193
-
-
Caceres, J.F.1
Kornblihtt, A.R.2
-
8
-
-
0029053190
-
Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs
-
Chen CY, Sarnow P. 1995. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268: 415-417.
-
(1995)
Science
, vol.268
, pp. 415-417
-
-
Chen, C.Y.1
Sarnow, P.2
-
9
-
-
84929322923
-
Regulation of circRNA biogenesis
-
Chen LL, Yang L. 2015. Regulation of circRNA biogenesis. RNA Biol 12: 381-388.
-
(2015)
RNA Biol
, vol.12
, pp. 381-388
-
-
Chen, L.L.1
Yang, L.2
-
11
-
-
84924599473
-
The RNA binding protein quaking regulates formation of circRNAs
-
Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ. 2015. The RNA binding protein quaking regulates formation of circRNAs. Cell 160: 1125-1134.
-
(2015)
Cell
, vol.160
, pp. 1125-1134
-
-
Conn, S.J.1
Pillman, K.A.2
Toubia, J.3
Conn, V.M.4
Salmanidis, M.5
Phillips, C.A.6
Roslan, S.7
Schreiber, A.W.8
Gregory, P.A.9
Goodall, G.J.10
-
12
-
-
0029585914
-
Inverted repeats are necessary for circularization of the mouse testis Sry transcript
-
Dubin RA, Kazmi MA, Ostrer H. 1995. Inverted repeats are necessary for circularization of the mouse testis Sry transcript. Gene 167: 245-248.
-
(1995)
Gene
, vol.167
, pp. 245-248
-
-
Dubin, R.A.1
Kazmi, M.A.2
Ostrer, H.3
-
14
-
-
79951516651
-
Laccase2 is required for cuticular pigmentation in stinkbugs
-
Futahashi R, Tanaka K, Matsuura Y, Tanahashi M, Kikuchi Y, Fukatsu T. 2011. Laccase2 is required for cuticular pigmentation in stinkbugs. Insect Biochem Mol Biol 41: 191-196.
-
(2011)
Insect Biochem Mol Biol
, vol.41
, pp. 191-196
-
-
Futahashi, R.1
Tanaka, K.2
Matsuura, Y.3
Tanahashi, M.4
Kikuchi, Y.5
Fukatsu, T.6
-
15
-
-
84908128765
-
CircBase: A database for circular RNAs
-
Glazar P, Papavasileiou P, Rajewsky N. 2014. circBase: a database for circular RNAs. RNA 20: 1666-1670.
-
(2014)
RNA
, vol.20
, pp. 1666-1670
-
-
Glazar, P.1
Papavasileiou, P.2
Rajewsky, N.3
-
16
-
-
84956906428
-
Expanded identification and characterization of mammalian circular RNAs
-
Guo JU, Agarwal V, Guo H, Bartel DP. 2014. Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15: 409.
-
(2014)
Genome Biol
, vol.15
, pp. 409
-
-
Guo, J.U.1
Agarwal, V.2
Guo, H.3
Bartel, D.P.4
-
17
-
-
85018065298
-
-
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. 2013.
-
(2013)
-
-
Hansen, T.B.1
Jensen, T.I.2
Clausen, B.H.3
Bramsen, J.B.4
Finsen, B.5
Damgaard, C.K.6
Kjems, J.7
-
18
-
-
84875372911
-
Natural RNA circles function as efficient microRNA sponges
-
Natural RNA circles function as efficient microRNA sponges. Nature 495: 384-388.
-
Nature
, vol.495
, pp. 384-388
-
-
-
19
-
-
0024291288
-
Simple RNA enzymes with new and highly specific endoribonuclease activities
-
Haseloff J, Gerlach WL. 1988. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334: 585-591.
-
(1988)
Nature
, vol.334
, pp. 585-591
-
-
Haseloff, J.1
Gerlach, W.L.2
-
20
-
-
84920917407
-
Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals
-
Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M, Dieterich C, et al. 2015. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10: 170-177.
-
(2015)
Cell Rep
, vol.10
, pp. 170-177
-
-
Ivanov, A.1
Memczak, S.2
Wyler, E.3
Torti, F.4
Porath, H.T.5
Orejuela, M.R.6
Piechotta, M.7
Levanon, E.Y.8
Landthaler, M.9
Dieterich, C.10
-
21
-
-
84924747035
-
Elucidation of the serosal cuticle machinery in the beetle Tribolium by RNA sequencing and functional analysis of Knickkopf1, Retroactive and Laccase2
-
Jacobs CG, Braak N, Lamers GE, van der Zee M. 2015. Elucidation of the serosal cuticle machinery in the beetle Tribolium by RNA sequencing and functional analysis of Knickkopf1, Retroactive and Laccase2. Insect Biochem Mol Biol 60: 7-12.
-
(2015)
Insect Biochem Mol Biol
, vol.60
, pp. 7-12
-
-
Jacobs, C.G.1
Braak, N.2
Lamers, G.E.3
Van Der Zee, M.4
-
22
-
-
84900322651
-
Detecting and characterizing circular RNAs
-
Jeck WR, Sharpless NE. 2014. Detecting and characterizing circular RNAs. Nat Biotechnol 32: 453-461.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 453-461
-
-
Jeck, W.R.1
Sharpless, N.E.2
-
23
-
-
84872531655
-
Circular RNAs are abundant, conserved,andassociatedwithALUrepeats
-
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE. 2013. Circular RNAs are abundant, conserved,andassociatedwithALUrepeats. RNA 19:141-157.
-
(2013)
RNA
, vol.19
, pp. 141-157
-
-
Jeck, W.R.1
Sorrentino, J.A.2
Wang, K.3
Slevin, M.K.4
Burd, C.E.5
Liu, J.6
Marzluff, W.F.7
Sharpless, N.E.8
-
25
-
-
84911491114
-
Circular RNAs: Diversity of form and function
-
Lasda E, Parker R. 2014. Circular RNAs: diversity of form and function. RNA 20: 1829-1842.
-
(2014)
RNA
, vol.20
, pp. 1829-1842
-
-
Lasda, E.1
Parker, R.2
-
26
-
-
84924274183
-
Exon-intron circular RNAs regulate transcription in the nucleus
-
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al. 2015. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22: 256-264.
-
(2015)
Nat Struct Mol Biol
, vol.22
, pp. 256-264
-
-
Li, Z.1
Huang, C.2
Bao, C.3
Chen, L.4
Lin, M.5
Wang, X.6
Zhong, G.7
Yu, B.8
Hu, W.9
Dai, L.10
-
27
-
-
84908093894
-
Short intronic repeat sequences facilitate circular RNA production
-
Liang D, Wilusz JE. 2014. Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28: 2233-2247.
-
(2014)
Genes Dev
, vol.28
, pp. 2233-2247
-
-
Liang, D.1
Wilusz, J.E.2
-
28
-
-
0035949674
-
A computational analysis of sequence features involved in recognition of short introns
-
Lim LP, Burge CB. 2001. A computational analysis of sequence features involved in recognition of short introns. Proc Natl Acad Sci 98: 11193-11198.
-
(2001)
Proc Natl Acad Sci
, vol.98
, pp. 11193-11198
-
-
Lim, L.P.1
Burge, C.B.2
-
29
-
-
54149091257
-
Metabolism and regulation of canonical histone mRNAs: Life without a poly(A) tail
-
Marzluff WF, Wagner EJ, Duronio RJ. 2008. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 9: 843-854.
-
(2008)
Nat Rev Genet
, vol.9
, pp. 843-854
-
-
Marzluff, W.F.1
Wagner, E.J.2
Duronio, R.J.3
-
30
-
-
84875369248
-
Circular RNAs are a large class of animal RNAs with regulatory potency
-
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al. 2013. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495: 333-338.
-
(2013)
Nature
, vol.495
, pp. 333-338
-
-
Memczak, S.1
Jens, M.2
Elefsinioti, A.3
Torti, F.4
Krueger, J.5
Rybak, A.6
Maier, L.7
MacKowiak, S.D.8
Gregersen, L.H.9
Munschauer, M.10
-
31
-
-
0025976493
-
Scrambled exons
-
Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD, Kinzler KW, Vogelstein B. 1991. Scrambled exons. Cell 64: 607-613.
-
(1991)
Cell
, vol.64
, pp. 607-613
-
-
Nigro, J.M.1
Cho, K.R.2
Fearon, E.R.3
Kern, S.E.4
Ruppert, J.M.5
Oliner, J.D.6
Kinzler, K.W.7
Vogelstein, B.8
-
32
-
-
84941067776
-
RNAcircularization strategies in vivo and in vitro
-
Petkovic S, Muller S. 2015.RNAcircularization strategies in vivo and in vitro. Nucleic Acids Res 43: 2454-2465.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 2454-2465
-
-
Petkovic, S.1
Muller, S.2
-
33
-
-
84939419124
-
Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed
-
Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, et al. 2015. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58: 870-885.
-
Mol Cell
, vol.58
, pp. 2015-2885
-
-
Rybak-Wolf, A.1
Stottmeister, C.2
Glazar, P.3
Jens, M.4
Pino, N.5
Giusti, S.6
Hanan, M.7
Behm, M.8
Bartok, O.9
Ashwal-Fluss, R.10
-
34
-
-
84863045982
-
Circular RNAs are the predominant transcript isoform from hundreds ofhumangenes in diverse cell types
-
Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. 2012. Circular RNAs are the predominant transcript isoform from hundreds ofhumangenes in diverse cell types. PLoSOne 7: e30733.
-
(2012)
Plosone
, vol.7
-
-
Salzman, J.1
Gawad, C.2
Wang, P.L.3
Lacayo, N.4
Brown, P.O.5
-
35
-
-
84884687363
-
Celltype specific features of circular RNA expression
-
Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. 2013. Celltype specific features of circular RNA expression. PLoS Genet 9: e1003777.
-
(2013)
Plos Genet
, vol.9
-
-
Salzman, J.1
Chen, R.E.2
Olsen, M.N.3
Wang, P.L.4
Brown, P.O.5
-
36
-
-
0034256020
-
Alternative pre-mRNAsplicing: The logic of combinatorial control
-
Smith CW, Valcarcel J. 2000. Alternative pre-mRNAsplicing: the logic of combinatorial control. Trends Biochem Sci 25: 381-388.
-
(2000)
Trends Biochem Sci
, vol.25
, pp. 381-388
-
-
Smith, C.W.1
Valcarcel, J.2
-
37
-
-
84920923470
-
Exon circularization requires canonical splice signals
-
Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH, Bindereif A. 2015. Exon circularization requires canonical splice signals. Cell Rep 10: 103-111.
-
(2015)
Cell Rep
, vol.10
, pp. 103-111
-
-
Starke, S.1
Jost, I.2
Rossbach, O.3
Schneider, T.4
Schreiner, S.5
Hung, L.H.6
Bindereif, A.7
-
38
-
-
0032976697
-
Circular dystrophin RNAs consisting of exons that were skipped by alternative splicing
-
Surono A, Takeshima Y, Wibawa T, Ikezawa M, Nonaka I, Matsuo M. 1999. Circular dystrophin RNAs consisting of exons that were skipped by alternative splicing. Hum Mol Genet 8: 493-500.
-
(1999)
Hum Mol Genet
, vol.8
, pp. 493-500
-
-
Surono, A.1
Takeshima, Y.2
Wibawa, T.3
Ikezawa, M.4
Nonaka, I.5
Matsuo, M.6
-
39
-
-
84921368391
-
Efficient backsplicing produces translatable circular mRNAs
-
Wang Y, Wang Z. 2015. Efficient backsplicing produces translatable circular mRNAs. RNA 21: 172-179.
-
(2015)
RNA
, vol.21
, pp. 172-179
-
-
Wang, Y.1
Wang, Z.2
-
40
-
-
84897568165
-
Circular RNA is expressed across the eukaryotic tree of life
-
Wang PL, Bao Y, Yee MC, Barrett SP, Hogan GJ, Olsen MN, Dinneny JR, Brown PO, Salzman J. 2014. Circular RNA is expressed across the eukaryotic tree of life. PLoS One 9: e90859.
-
(2014)
Plos One
, vol.9
-
-
Wang, P.L.1
Bao, Y.2
Yee, M.C.3
Barrett, S.P.4
Hogan, G.J.5
Olsen, M.N.6
Dinneny, J.R.7
Brown, P.O.8
Salzman, J.9
-
41
-
-
84915820022
-
Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation
-
Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR, Lai EC. 2014. Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9: 1966-1980.
-
(2014)
Cell Rep
, vol.9
, pp. 1966-1980
-
-
Westholm, J.O.1
Miura, P.2
Olson, S.3
Shenker, S.4
Joseph, B.5
Sanfilippo, P.6
Celniker, S.E.7
Graveley, B.R.8
Lai, E.C.9
-
42
-
-
85034111397
-
Repetitive elements regulate circular RNA biogenesis
-
Wilusz JE. 2015. Repetitive elements regulate circular RNA biogenesis. Mob Genet Elements 5: 1-7.
-
(2015)
Mob Genet Elements
, vol.5
, pp. 1-7
-
-
Wilusz, J.E.1
-
43
-
-
84876580450
-
Molecular biology. A circuitous route to noncoding RNA
-
Wilusz JE, Sharp PA. 2013. Molecular biology. A circuitous route to noncoding RNA. Science 340: 440-441.
-
(2013)
Science
, vol.340
, pp. 440-441
-
-
Wilusz, J.E.1
Sharp, P.A.2
-
44
-
-
56349113455
-
3′end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA
-
Wilusz JE, Freier SM, Spector DL. 2008. 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135: 919-932.
-
(2008)
Cell
, vol.135
, pp. 919-932
-
-
Wilusz, J.E.1
Freier, S.M.2
Spector, D.L.3
-
45
-
-
84868519473
-
A triple helix stabilizes the 3′ends of long noncoding RNAs that lack poly(A) tails
-
Wilusz JE, JnBaptiste CK, Lu LY, Kuhn CD, Joshua-Tor L, Sharp PA. 2012. A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev 26: 2392-2407.
-
(2012)
Genes Dev
, vol.26
, pp. 2392-2407
-
-
Wilusz, J.E.1
Jnbaptiste, C.K.2
Lu, L.Y.3
Kuhn, C.D.4
Joshua-Tor, L.5
Sharp, P.A.6
-
46
-
-
84940467226
-
Widespread noncoding circular RNAs in plants
-
Ye CY, Chen L, Liu C, Zhu QH, Fan L. 2015.Widespread noncoding circular RNAs in plants. New Phytol 208: 88-95.
-
(2015)
New Phytol
, vol.208
, pp. 88-95
-
-
Ye, C.Y.1
Chen, L.2
Liu, C.3
Zhu, Q.H.4
Fan, L.5
-
47
-
-
84925773568
-
Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity
-
You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, et al. 2015. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18: 603-610.
-
(2015)
Nat Neurosci
, vol.18
, pp. 603-610
-
-
You, X.1
Vlatkovic, I.2
Babic, A.3
Will, T.4
Epstein, I.5
Tushev, G.6
Akbalik, G.7
Wang, M.8
Glock, C.9
Quedenau, C.10
-
48
-
-
0030946966
-
Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis
-
Zaphiropoulos PG. 1997. Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis. Mol Cell Biol 17: 2985-2993.
-
(1997)
Mol Cell Biol
, vol.17
, pp. 2985-2993
-
-
Zaphiropoulos, P.G.1
-
49
-
-
84907509527
-
Complementary sequence-mediated exon circularization
-
Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. 2014. Complementary sequence-mediated exon circularization. Cell 159: 134-147.
-
(2014)
Cell
, vol.159
, pp. 134-147
-
-
Zhang, X.O.1
Wang, H.B.2
Zhang, Y.3
Lu, X.4
Chen, L.L.5
Yang, L.6
|