메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 4715-4723

Structured feature learning for pose estimation

Author keywords

[No Author keywords available]

Indexed keywords

MATHEMATICAL TRANSFORMATIONS;

EID: 85009841575     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.510     Document Type: Conference Paper
Times cited : (273)

References (37)
  • 1
    • 84911448580 scopus 로고    scopus 로고
    • 2d human pose estimation: New benchmark and state of the art analysis
    • M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d human pose estimation: New benchmark and state of the art analysis. In CVPR, 2014.
    • (2014) CVPR
    • Andriluka, M.1    Pishchulin, L.2    Gehler, P.3    Schiele, B.4
  • 2
    • 70450203723 scopus 로고    scopus 로고
    • Pictorial structures revisited: People detection and articulated pose estimation
    • M. Andriluka, S. Roth, and B. Schiele. Pictorial structures revisited: people detection and articulated pose estimation. In CVPR, 2009.
    • (2009) CVPR
    • Andriluka, M.1    Roth, S.2    Schiele, B.3
  • 3
    • 80052912306 scopus 로고    scopus 로고
    • Detecting people using mutually consistent poselet activations
    • L. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting people using mutually consistent poselet activations. In ECCV, 2010.
    • (2010) ECCV
    • Bourdev, L.1    Maji, S.2    Brox, T.3    Malik, J.4
  • 5
    • 84937873698 scopus 로고    scopus 로고
    • Articulated pose estimation by a graphical model with image dependent pairwise relations
    • X. Chen and A. L. Yuille. Articulated pose estimation by a graphical model with image dependent pairwise relations. In NIPS, 2014.
    • (2014) NIPS
    • Chen, X.1    Yuille, A.L.2
  • 6
    • 84870249775 scopus 로고    scopus 로고
    • Adaptive occlusion state estimation for human pose tracking under selfocclusions
    • N.-G. Cho, A. L. Yuille, and S.-W. Lee. Adaptive occlusion state estimation for human pose tracking under selfocclusions. Pattern Recognition, 46(3):649-661, 2013.
    • (2013) Pattern Recognition , vol.46 , Issue.3 , pp. 649-661
    • Cho, N.-G.1    Yuille, A.L.2    Lee, S.-W.3
  • 7
    • 84973866177 scopus 로고    scopus 로고
    • Multi-task recurrent neural network for immediacy prediction
    • X. Chu, W. Ouyang, W. Yang, and X. Wang. Multi-task recurrent neural network for immediacy prediction. In ICCV, 2015.
    • (2015) ICCV
    • Chu, X.1    Ouyang, W.2    Yang, W.3    Wang, X.4
  • 8
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 9
    • 84907812435 scopus 로고    scopus 로고
    • Appearance sharing for collective human pose estimation
    • M. Eichner and V. Ferrari. Appearance sharing for collective human pose estimation. In ACCV, 2012.
    • (2012) ACCV
    • Eichner, M.1    Ferrari, V.2
  • 11
    • 4644354464 scopus 로고    scopus 로고
    • Pictorial structures for object recognition
    • P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recognition. IJCV, 61(1):55-79, 2005.
    • (2005) IJCV , vol.61 , Issue.1 , pp. 55-79
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 13
    • 84898472539 scopus 로고    scopus 로고
    • Clustered pose and nonlinear appearance models for human pose estimation
    • S. Johnson and M. Everingham. Clustered pose and nonlinear appearance models for human pose estimation. In BMVC, 2010.
    • (2010) BMVC
    • Johnson, S.1    Everingham, M.2
  • 14
    • 84986331475 scopus 로고    scopus 로고
    • Object detection from video tubelets with convolutional neural networks
    • K. Kang, W. Ouyang, H. Li, and X. Wang. Object detection from video tubelets with convolutional neural networks. In CVPR, 2016.
    • (2016) CVPR
    • Kang, K.1    Ouyang, W.2    Li, H.3    Wang, X.4
  • 16
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 17
    • 84911409274 scopus 로고    scopus 로고
    • Multi-source deep learning for human pose estimation
    • W. Ouyang, X. Chu, and X. Wang. Multi-source deep learning for human pose estimation. In CVPR, 2014.
    • (2014) CVPR
    • Ouyang, W.1    Chu, X.2    Wang, X.3
  • 20
    • 84898795911 scopus 로고    scopus 로고
    • Strong appearance and expressive spatial models for human pose estimation
    • December
    • L. Pishchulin, M. Andriluka, P. Gehler, and B. Schiele. Strong appearance and expressive spatial models for human pose estimation. In ICCV, December 2013.
    • (2013) ICCV
    • Pishchulin, L.1    Andriluka, M.2    Gehler, P.3    Schiele, B.4
  • 21
    • 84887370243 scopus 로고    scopus 로고
    • Modec: Multimodal decomposable models for human pose estimation
    • B. Sapp and B. Taskar. Modec: Multimodal decomposable models for human pose estimation. In CVPR, 2013.
    • (2013) CVPR
    • Sapp, B.1    Taskar, B.2
  • 25
    • 84887323389 scopus 로고    scopus 로고
    • Exploring the spatial hierarchy of mixture models for human pose estimation
    • Y. Tian, C. L. Zitnick, and S. G. Narasimhan. Exploring the spatial hierarchy of mixture models for human pose estimation. In ECCV. 2012.
    • (2012) ECCV
    • Tian, Y.1    Zitnick, C.L.2    Narasimhan, S.G.3
  • 27
    • 84930634156 scopus 로고    scopus 로고
    • Joint training of a convolutional network and a graphical model for human pose estimation
    • J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolutional network and a graphical model for human pose estimation. In NIPS, 2014.
    • (2014) NIPS
    • Tompson, J.J.1    Jain, A.2    LeCun, Y.3    Bregler, C.4
  • 28
    • 84911381180 scopus 로고    scopus 로고
    • Deeppose: Human pose estimation via deep neural networks
    • A. Toshev and C. Szegedy. Deeppose: Human pose estimation via deep neural networks. In CVPR, 2014.
    • (2014) CVPR
    • Toshev, A.1    Szegedy, C.2
  • 29
    • 84887346790 scopus 로고    scopus 로고
    • An approach to posebased action recognition
    • C. Wang, Y. Wang, and A. L. Yuille. An approach to posebased action recognition. In CVPR, 2013.
    • (2013) CVPR
    • Wang, C.1    Wang, Y.2    Yuille, A.L.3
  • 30
    • 84887367149 scopus 로고    scopus 로고
    • Beyond physical connections: Tree models in human pose estimation
    • F.Wang and Y. Li. Beyond physical connections: Tree models in human pose estimation. In CVPR, 2013.
    • (2013) CVPR
    • Wang, F.1    Li, Y.2
  • 31
    • 80052913131 scopus 로고    scopus 로고
    • Learning hierarchical poselets for human parsing
    • Y. Wang, D. Tran, and Z. Liao. Learning hierarchical poselets for human parsing. In CVPR, 2011.
    • (2011) CVPR
    • Wang, Y.1    Tran, D.2    Liao, Z.3
  • 32
    • 84986264911 scopus 로고    scopus 로고
    • Learning deep feature representations with domain guided dropout for person re-identification
    • T. Xiao, H. Li,W. Ouyang, and X.Wang. Learning deep feature representations with domain guided dropout for person re-identification. In CVPR, 2016.
    • (2016) CVPR
    • Xiao, T.1    Li, H.2    Ouyang, W.3    Wang, X.4
  • 34
    • 84986295323 scopus 로고    scopus 로고
    • End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation
    • W. Yang,W. Ouyang, H. Li, and X.Wang. End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation. In CVPR, 2016.
    • (2016) CVPR
    • Yang, W.1    Ouyang, W.2    Li, H.3    Wang, X.4
  • 35
    • 84887598018 scopus 로고    scopus 로고
    • Articulated human detection with flexible mixtures of parts
    • Y. Yang and D. Ramanan. Articulated human detection with flexible mixtures of parts. PAMI, 35(12):2878-2890, 2013.
    • (2013) PAMI , vol.35 , Issue.12 , pp. 2878-2890
    • Yang, Y.1    Ramanan, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.