-
1
-
-
84986334053
-
Dynamic image networks for action recognition
-
H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, and S. Gould. Dynamic image networks for action recognition. In CVPR, 2016.
-
(2016)
CVPR
-
-
Bilen, H.1
Fernando, B.2
Gavves, E.3
Vedaldi, A.4
Gould, S.5
-
2
-
-
84959236502
-
Long-term recurrent convolutional networks for visual recognition and description
-
J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual recognition and description. In CVPR, 2015.
-
(2015)
CVPR
-
-
Donahue, J.1
Anne Hendricks, L.2
Guadarrama, S.3
Rohrbach, M.4
Venugopalan, S.5
Saenko, K.6
Darrell, T.7
-
3
-
-
84959217041
-
Hierarchical recurrent neural network for skeleton based action recognition
-
Y. Du, W. Wang, and L. Wang. Hierarchical recurrent neural network for skeleton based action recognition. In CVPR, 2015.
-
(2015)
CVPR
-
-
Du, Y.1
Wang, W.2
Wang, L.3
-
4
-
-
84959223985
-
Modeling video evolution for action recognition
-
B. Fernando, E. Gavves, J. Oramas, A. Ghodrati, and T. Tuytelaars. Modeling video evolution for action recognition. In CVPR, 2015.
-
(2015)
CVPR
-
-
Fernando, B.1
Gavves, E.2
Oramas, J.3
Ghodrati, A.4
Tuytelaars, T.5
-
5
-
-
84986281831
-
Rank pooling for action recognition
-
B. Fernando, E. Gavves, J. Oramas, A. Ghodrati, and T. Tuytelaars. Rank pooling for action recognition. TPAMI, 2016.
-
(2016)
TPAMI
-
-
Fernando, B.1
Gavves, E.2
Oramas, J.3
Ghodrati, A.4
Tuytelaars, T.5
-
6
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
7
-
-
84951968109
-
Improving human action recognition using score distribution and ranking
-
M. Hoai and A. Zisserman. Improving human action recognition using score distribution and ranking. In ACCV, 2014.
-
(2014)
ACCV
-
-
Hoai, M.1
Zisserman, A.2
-
9
-
-
84887398298
-
Better exploiting motion for better action recognition
-
M. Jain, H. Jégou, and P. Bouthemy. Better exploiting motion for better action recognition. In CVPR, 2013.
-
(2013)
CVPR
-
-
Jain, M.1
Jégou, H.2
Bouthemy, P.3
-
10
-
-
77956004473
-
Aggregating local descriptors into a compact image representation
-
IEEE
-
H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into a compact image representation. In CVPR, pages 3304-3311. IEEE, 2010.
-
(2010)
CVPR
, pp. 3304-3311
-
-
Jégou, H.1
Douze, M.2
Schmid, C.3
Pérez, P.4
-
11
-
-
84870183903
-
3d convolutional neural networks for human action recognition
-
S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks for human action recognition. PAMI, 35(1):221-231, 2013.
-
(2013)
PAMI
, vol.35
, Issue.1
, pp. 221-231
-
-
Ji, S.1
Xu, W.2
Yang, M.3
Yu, K.4
-
12
-
-
33749563073
-
Training linear svms in linear time
-
T. Joachims. Training linear svms in linear time. In ICKDD, 2006.
-
(2006)
ICKDD
-
-
Joachims, T.1
-
13
-
-
84911364368
-
Large-scale video classification with convolutional neural networks
-
A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks. In CVPR, 2014.
-
(2014)
CVPR
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Fei-Fei, L.6
-
14
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105. 2012.
-
(2012)
NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
15
-
-
84856682691
-
Hmdb: A large video database for human motion recognition
-
H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. Hmdb: a large video database for human motion recognition. In ICCV, 2011.
-
(2011)
ICCV
-
-
Kuehne, H.1
Jhuang, H.2
Garrote, E.3
Poggio, T.4
Serre, T.5
-
16
-
-
84973931670
-
Action recognition by hierarchical mid-level action elements
-
T. Lan, Y. Zhu, A. R. Zamir, and S. Savarese. Action recognition by hierarchical mid-level action elements. In ICCV, 2015.
-
(2015)
ICCV
-
-
Lan, T.1
Zhu, Y.2
Zamir, A.R.3
Savarese, S.4
-
17
-
-
84959241532
-
Beyond Gaussian pyramid: Multi-skip feature stacking for action recognition
-
Z. Lan, M. Lin, X. Li, A. G. Hauptmann, and B. Raj. Beyond Gaussian pyramid: Multi-skip feature stacking for action recognition. In CVPR, 2015.
-
(2015)
CVPR
-
-
Lan, Z.1
Lin, M.2
Li, X.3
Hauptmann, A.G.4
Raj, B.5
-
20
-
-
84931073375
-
Scale space and variational methods in computer vision (ssvmcv)
-
Springer
-
P. Ochs, R. Ranftl, T. Brox, and T. Pock. Scale Space and Variational Methods in Computer Vision (SSVMCV), chapter Bilevel Optimization with Nonsmooth Lower Level Problems, pages 654-665. Springer, 2015.
-
(2015)
Chapter Bilevel Optimization with Nonsmooth Lower Level Problems
, pp. 654-665
-
-
Ochs, P.1
Ranftl, R.2
Brox, T.3
Pock, T.4
-
21
-
-
84947130265
-
Action recognition with stacked fisher vectors
-
X. Peng, C. Zou, Y. Qiao, and Q. Peng. Action recognition with stacked fisher vectors. In ECCV, 2014.
-
(2014)
ECCV
-
-
Peng, X.1
Zou, C.2
Qiao, Y.3
Peng, Q.4
-
22
-
-
77955992063
-
Large-scale image retrieval with compressed fisher vectors
-
F. Perronnin, Y. Liu, J. Sánchez, and H. Poirier. Large-scale image retrieval with compressed fisher vectors. In CVPR, 2010.
-
(2010)
CVPR
-
-
Perronnin, F.1
Liu, Y.2
Sánchez, J.3
Poirier, H.4
-
23
-
-
84959179565
-
Pooled motion features for first-person videos
-
June
-
M. S. Ryoo, B. Rothrock, and L. Matthies. Pooled motion features for first-person videos. In CVPR, June 2015.
-
(2015)
CVPR
-
-
Ryoo, M.S.1
Rothrock, B.2
Matthies, L.3
-
24
-
-
84937862424
-
Two-stream convolutional networks for action recognition in videos
-
K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, pages 568-576, 2014.
-
(2014)
NIPS
, pp. 568-576
-
-
Simonyan, K.1
Zisserman, A.2
-
26
-
-
84887335980
-
Action recognition by hierarchical sequence summarization
-
Y. Song, L.-P. Morency, and R. Davis. Action recognition by hierarchical sequence summarization. In CVPR, 2013.
-
(2013)
CVPR
-
-
Song, Y.1
Morency, L.-P.2
Davis, R.3
-
29
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In NIPS, pages 3104-3112, 2014.
-
(2014)
NIPS
, pp. 3104-3112
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.3
-
30
-
-
84973865953
-
Learning spatiotemporal features with 3d convolutional networks
-
D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with 3d convolutional networks. In ICCV, 2015.
-
(2015)
ICCV
-
-
Tran, D.1
Bourdev, L.2
Fergus, R.3
Torresani, L.4
Paluri, M.5
-
31
-
-
84856194352
-
Efficient additive kernels via explicit feature maps
-
A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. PAMI, 34:480-492, 2012.
-
(2012)
PAMI
, pp. 34480-34492
-
-
Vedaldi, A.1
Zisserman, A.2
-
32
-
-
84876945537
-
Dense trajectories and motion boundary descriptors for action recognition
-
H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense trajectories and motion boundary descriptors for action recognition. IJCV, 103:60-79, 2013.
-
(2013)
IJCV
, vol.103
, pp. 60-79
-
-
Wang, H.1
Kläser, A.2
Schmid, C.3
Liu, C.-L.4
-
33
-
-
84898805910
-
Action recognition with improved trajectories
-
H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013.
-
(2013)
ICCV
-
-
Wang, H.1
Schmid, C.2
-
34
-
-
84955282488
-
Action recognition with trajectory-pooled deep-convolutional descriptors
-
L. Wang, Y. Qiao, and X. Tang. Action recognition with trajectory-pooled deep-convolutional descriptors. In CVPR, pages 4305-4314, 2015.
-
(2015)
CVPR
, pp. 4305-4314
-
-
Wang, L.1
Qiao, Y.2
Tang, X.3
-
35
-
-
84911433150
-
Towards good practices for action video encoding
-
J. Wu, Y. Zhang, and W. Lin. Towards good practices for action video encoding. In CVPR, 2014.
-
(2014)
CVPR
-
-
Wu, J.1
Zhang, Y.2
Lin, W.3
-
36
-
-
84959228762
-
Beyond short snippets: Deep networks for video classification
-
J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici. Beyond short snippets: Deep networks for video classification. In CVPR, 2015.
-
(2015)
CVPR
-
-
Yue-Hei Ng, J.1
Hausknecht, M.2
Vijayanarasimhan, S.3
Vinyals, O.4
Monga, R.5
Toderici, G.6
-
37
-
-
84986246211
-
Exploiting image-trained CNN architectures for unconstrained video classification
-
S. Zha, F. Luisier, W. Andrews, N. Srivastava, and R. Salakhutdinov. Exploiting image-trained CNN architectures for unconstrained video classification. In BMVC, 2015.
-
(2015)
BMVC
-
-
Zha, S.1
Luisier, F.2
Andrews, W.3
Srivastava, N.4
Salakhutdinov, R.5
|