메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 1924-1932

Discriminative Hierarchical Rank Pooling for Activity Recognition

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; ENCODING (SYMBOLS); IMAGE RECOGNITION; MOTION ESTIMATION; NEURAL NETWORKS; VIDEO RECORDING;

EID: 84986290213     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.212     Document Type: Conference Paper
Times cited : (113)

References (37)
  • 3
    • 84959217041 scopus 로고    scopus 로고
    • Hierarchical recurrent neural network for skeleton based action recognition
    • Y. Du, W. Wang, and L. Wang. Hierarchical recurrent neural network for skeleton based action recognition. In CVPR, 2015.
    • (2015) CVPR
    • Du, Y.1    Wang, W.2    Wang, L.3
  • 6
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 7
    • 84951968109 scopus 로고    scopus 로고
    • Improving human action recognition using score distribution and ranking
    • M. Hoai and A. Zisserman. Improving human action recognition using score distribution and ranking. In ACCV, 2014.
    • (2014) ACCV
    • Hoai, M.1    Zisserman, A.2
  • 9
    • 84887398298 scopus 로고    scopus 로고
    • Better exploiting motion for better action recognition
    • M. Jain, H. Jégou, and P. Bouthemy. Better exploiting motion for better action recognition. In CVPR, 2013.
    • (2013) CVPR
    • Jain, M.1    Jégou, H.2    Bouthemy, P.3
  • 10
    • 77956004473 scopus 로고    scopus 로고
    • Aggregating local descriptors into a compact image representation
    • IEEE
    • H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into a compact image representation. In CVPR, pages 3304-3311. IEEE, 2010.
    • (2010) CVPR , pp. 3304-3311
    • Jégou, H.1    Douze, M.2    Schmid, C.3    Pérez, P.4
  • 11
    • 84870183903 scopus 로고    scopus 로고
    • 3d convolutional neural networks for human action recognition
    • S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks for human action recognition. PAMI, 35(1):221-231, 2013.
    • (2013) PAMI , vol.35 , Issue.1 , pp. 221-231
    • Ji, S.1    Xu, W.2    Yang, M.3    Yu, K.4
  • 12
    • 33749563073 scopus 로고    scopus 로고
    • Training linear svms in linear time
    • T. Joachims. Training linear svms in linear time. In ICKDD, 2006.
    • (2006) ICKDD
    • Joachims, T.1
  • 14
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105. 2012.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 15
  • 16
    • 84973931670 scopus 로고    scopus 로고
    • Action recognition by hierarchical mid-level action elements
    • T. Lan, Y. Zhu, A. R. Zamir, and S. Savarese. Action recognition by hierarchical mid-level action elements. In ICCV, 2015.
    • (2015) ICCV
    • Lan, T.1    Zhu, Y.2    Zamir, A.R.3    Savarese, S.4
  • 17
    • 84959241532 scopus 로고    scopus 로고
    • Beyond Gaussian pyramid: Multi-skip feature stacking for action recognition
    • Z. Lan, M. Lin, X. Li, A. G. Hauptmann, and B. Raj. Beyond Gaussian pyramid: Multi-skip feature stacking for action recognition. In CVPR, 2015.
    • (2015) CVPR
    • Lan, Z.1    Lin, M.2    Li, X.3    Hauptmann, A.G.4    Raj, B.5
  • 21
    • 84947130265 scopus 로고    scopus 로고
    • Action recognition with stacked fisher vectors
    • X. Peng, C. Zou, Y. Qiao, and Q. Peng. Action recognition with stacked fisher vectors. In ECCV, 2014.
    • (2014) ECCV
    • Peng, X.1    Zou, C.2    Qiao, Y.3    Peng, Q.4
  • 22
    • 77955992063 scopus 로고    scopus 로고
    • Large-scale image retrieval with compressed fisher vectors
    • F. Perronnin, Y. Liu, J. Sánchez, and H. Poirier. Large-scale image retrieval with compressed fisher vectors. In CVPR, 2010.
    • (2010) CVPR
    • Perronnin, F.1    Liu, Y.2    Sánchez, J.3    Poirier, H.4
  • 23
    • 84959179565 scopus 로고    scopus 로고
    • Pooled motion features for first-person videos
    • June
    • M. S. Ryoo, B. Rothrock, and L. Matthies. Pooled motion features for first-person videos. In CVPR, June 2015.
    • (2015) CVPR
    • Ryoo, M.S.1    Rothrock, B.2    Matthies, L.3
  • 24
    • 84937862424 scopus 로고    scopus 로고
    • Two-stream convolutional networks for action recognition in videos
    • K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, pages 568-576, 2014.
    • (2014) NIPS , pp. 568-576
    • Simonyan, K.1    Zisserman, A.2
  • 26
    • 84887335980 scopus 로고    scopus 로고
    • Action recognition by hierarchical sequence summarization
    • Y. Song, L.-P. Morency, and R. Davis. Action recognition by hierarchical sequence summarization. In CVPR, 2013.
    • (2013) CVPR
    • Song, Y.1    Morency, L.-P.2    Davis, R.3
  • 29
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In NIPS, pages 3104-3112, 2014.
    • (2014) NIPS , pp. 3104-3112
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 30
    • 84973865953 scopus 로고    scopus 로고
    • Learning spatiotemporal features with 3d convolutional networks
    • D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with 3d convolutional networks. In ICCV, 2015.
    • (2015) ICCV
    • Tran, D.1    Bourdev, L.2    Fergus, R.3    Torresani, L.4    Paluri, M.5
  • 31
    • 84856194352 scopus 로고    scopus 로고
    • Efficient additive kernels via explicit feature maps
    • A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. PAMI, 34:480-492, 2012.
    • (2012) PAMI , pp. 34480-34492
    • Vedaldi, A.1    Zisserman, A.2
  • 32
    • 84876945537 scopus 로고    scopus 로고
    • Dense trajectories and motion boundary descriptors for action recognition
    • H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense trajectories and motion boundary descriptors for action recognition. IJCV, 103:60-79, 2013.
    • (2013) IJCV , vol.103 , pp. 60-79
    • Wang, H.1    Kläser, A.2    Schmid, C.3    Liu, C.-L.4
  • 33
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013.
    • (2013) ICCV
    • Wang, H.1    Schmid, C.2
  • 34
    • 84955282488 scopus 로고    scopus 로고
    • Action recognition with trajectory-pooled deep-convolutional descriptors
    • L. Wang, Y. Qiao, and X. Tang. Action recognition with trajectory-pooled deep-convolutional descriptors. In CVPR, pages 4305-4314, 2015.
    • (2015) CVPR , pp. 4305-4314
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 35
    • 84911433150 scopus 로고    scopus 로고
    • Towards good practices for action video encoding
    • J. Wu, Y. Zhang, and W. Lin. Towards good practices for action video encoding. In CVPR, 2014.
    • (2014) CVPR
    • Wu, J.1    Zhang, Y.2    Lin, W.3
  • 37
    • 84986246211 scopus 로고    scopus 로고
    • Exploiting image-trained CNN architectures for unconstrained video classification
    • S. Zha, F. Luisier, W. Andrews, N. Srivastava, and R. Salakhutdinov. Exploiting image-trained CNN architectures for unconstrained video classification. In BMVC, 2015.
    • (2015) BMVC
    • Zha, S.1    Luisier, F.2    Andrews, W.3    Srivastava, N.4    Salakhutdinov, R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.