메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 2791-2799

Visualizing and Understanding Deep Texture Representations

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; NEURAL NETWORKS;

EID: 84986277601     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.305     Document Type: Conference Paper
Times cited : (131)

References (40)
  • 2
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets
    • K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014.
    • (2014) BMVC
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 4
    • 84953455385 scopus 로고    scopus 로고
    • Deep filter banks for texture recognition, description, and segmentation
    • M. Cimpoi, S. Maji, I. Kokkinos, and A. Vedaldi. Deep filter banks for texture recognition, description, and segmentation. IJCV, pages 1-30, 2016.
    • (2016) IJCV , pp. 1-30
    • Cimpoi, M.1    Maji, S.2    Kokkinos, I.3    Vedaldi, A.4
  • 8
    • 84986250533 scopus 로고    scopus 로고
    • Inverting visual representations with convolutional networks
    • A. Dosovitskiy and T.Brox. Inverting visual representations with convolutional networks. In CVPR, 2016.
    • (2016) CVPR
    • Dosovitskiy, A.1    Brox, T.2
  • 9
    • 0035148826 scopus 로고    scopus 로고
    • Image quilting for texture synthesis and transfer
    • A. Efros and W. T. Freeman. Image quilting for texture synthesis and transfer. In SIGGRAPH, 2001.
    • (2001) SIGGRAPH
    • Efros, A.1    Freeman, W.T.2
  • 10
    • 0003870982 scopus 로고    scopus 로고
    • Texture synthesis by non-parametric sampling
    • A. Efros and T. Leung. Texture synthesis by non-parametric sampling. In CVPR, 1999.
    • (1999) CVPR
    • Efros, A.1    Leung, T.2
  • 13
    • 85055086873 scopus 로고    scopus 로고
    • Texture synthesis and the controlled generation of natural stimuli using convolutional neural networks
    • L. A. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis and the controlled generation of natural stimuli using convolutional neural networks. In NIPS, 2015.
    • (2015) NIPS
    • Gatys, L.A.1    Ecker, A.S.2    Bethge, M.3
  • 14
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.B.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 15
    • 84938217896 scopus 로고    scopus 로고
    • Multi-scale orderless pooling of deep convolutional activation features
    • Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale orderless pooling of deep convolutional activation features. In ECCV, 2014.
    • (2014) ECCV
    • Gong, Y.1    Wang, L.2    Guo, R.3    Lazebnik, S.4
  • 16
    • 84959236250 scopus 로고    scopus 로고
    • Hypercolumns for object segmentation and fine-grained localization
    • B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for object segmentation and fine-grained localization. In CVPR, 2015.
    • (2015) CVPR
    • Hariharan, B.1    Arbeláez, P.2    Girshick, R.3    Malik, J.4
  • 17
    • 0029182262 scopus 로고
    • Pyramid-based texture analysis/synthesis
    • D. J. Heeger and J. R. Bergen. Pyramid-based texture analysis/synthesis. In SIGGRAPH, 1995.
    • (1995) SIGGRAPH
    • Heeger, D.J.1    Bergen, J.R.2
  • 19
    • 77956004473 scopus 로고    scopus 로고
    • Aggregating local descriptors into a compact image representation
    • H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into a compact image representation. In CVPR, 2010.
    • (2010) CVPR
    • Jégou, H.1    Douze, M.2    Schmid, C.3    Pérez, P.4
  • 21
    • 0020777691 scopus 로고
    • Textons, the fundamental elements in preattentive vision and perception of textures
    • Jul-Aug
    • B. Julesz and J. R. Bergen. Textons, the fundamental elements in preattentive vision and perception of textures. Bell System Technical Journal, 62(6, Pt 3):1619-1645, Jul-Aug 1983.
    • (1983) Bell System Technical Journal , vol.62 , Issue.6 , pp. 1619-1645
    • Julesz, B.1    Bergen, J.R.2
  • 22
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 24
    • 0035358496 scopus 로고    scopus 로고
    • Representing and recognizing the visual appearance of materials using three-dimensional textons
    • T. Leung and J. Malik. Representing and recognizing the visual appearance of materials using three-dimensional textons. IJCV, 43(1):29-44, 2001.
    • (2001) IJCV , vol.43 , Issue.1 , pp. 29-44
    • Leung, T.1    Malik, J.2
  • 25
    • 84973863234 scopus 로고    scopus 로고
    • Bilinear CNN models for fine-grained visual recognition
    • T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear CNN Models for Fine-grained Visual Recognition. In ICCV, 2015.
    • (2015) ICCV
    • Lin, T.-Y.1    RoyChowdhury, A.2    Maji, S.3
  • 26
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 27
    • 0033284915 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • D. G. Lowe. Object recognition from local scale-invariant features. In ICCV, 1999.
    • (1999) ICCV
    • Lowe, D.G.1
  • 28
    • 84959213675 scopus 로고    scopus 로고
    • Understanding deep image representations by inverting them
    • A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. In CVPR, 2015.
    • (2015) CVPR
    • Mahendran, A.1    Vedaldi, A.2
  • 29
    • 84959207702 scopus 로고    scopus 로고
    • Feedforward semantic segmentation with zoom-out features
    • M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich. Feedforward semantic segmentation with zoom-out features. In CVPR, 2015.
    • (2015) CVPR
    • Mostajabi, M.1    Yadollahpour, P.2    Shakhnarovich, G.3
  • 30
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • F. Perronnin and C. R. Dance. Fisher kernels on visual vocabularies for image categorization. In CVPR, 2007.
    • (2007) CVPR
    • Perronnin, F.1    Dance, C.R.2
  • 31
    • 0034291204 scopus 로고    scopus 로고
    • A parametric texture model based on joint statistics of complex wavelet coefficients
    • J. Portilla and E. Simoncelli. A parametric texture model based on joint statistics of complex wavelet coefficients. IJCV, 40(1):49-70, 2000.
    • (2000) IJCV , vol.40 , Issue.1 , pp. 49-70
    • Portilla, J.1    Simoncelli, E.2
  • 32
    • 70450162315 scopus 로고    scopus 로고
    • Recognizing indoor scenes
    • A. Quattoni and A. Torralba. Recognizing indoor scenes. In CVPR, 2009.
    • (2009) CVPR
    • Quattoni, A.1    Torralba, A.2
  • 34
    • 77956003992 scopus 로고    scopus 로고
    • Material perceprion: What can you see in a brief glance
    • L. Sharan, R. Rosenholtz, and E. H. Adelson. Material perceprion: What can you see in a brief glance? Journal of Vision, 9:784(8), 2009.
    • (2009) Journal of Vision , vol.9 , Issue.8 , pp. 784
    • Sharan, L.1    Rosenholtz, R.2    Adelson, E.H.3
  • 35
    • 85083953896 scopus 로고    scopus 로고
    • Deep inside convolutional networks: Visualising image classification models and saliency maps
    • K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. In ICLR workshop, 2014.
    • (2014) ICLR Workshop
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 36
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 37
    • 78650994992 scopus 로고    scopus 로고
    • VLFeat: An open and portable library of computer vision algorithms
    • A. Vedaldi and B. Fulkerson. VLFeat: an open and portable library of computer vision algorithms. In ACM Multimedia (ACM MM), 2010.
    • (2010) ACM Multimedia (ACM MM)
    • Vedaldi, A.1    Fulkerson, B.2
  • 38
    • 84962815548 scopus 로고    scopus 로고
    • MatConvNet: Convolutional neural networks for matlab
    • A. Vedaldi and K. Lenc. MatConvNet: convolutional neural networks for matlab. In ACM Multimedia (ACM MM), 2015.
    • (2015) ACM Multimedia (ACM MM)
    • Vedaldi, A.1    Lenc, K.2
  • 39
    • 0034448271 scopus 로고    scopus 로고
    • Fast texture synthesis using treestructured vector quantization
    • L. Wei and M. Levoy. Fast texture synthesis using treestructured vector quantization. In SIGGRAPH, 2000.
    • (2000) SIGGRAPH
    • Wei, L.1    Levoy, M.2
  • 40
    • 85009899017 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
    • (2014) ECCV
    • Zeiler, M.D.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.