-
1
-
-
84887338331
-
Labelembedding for attribute-based classification
-
1, 2, 3, 5
-
Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Labelembedding for attribute-based classification. In CVPR, 2013. 1, 2, 3, 5
-
(2013)
CVPR
-
-
Akata, Z.1
Perronnin, F.2
Harchaoui, Z.3
Schmid, C.4
-
2
-
-
84894567325
-
Good practice in large-scale learning for image classification
-
3
-
Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Good practice in large-scale learning for image classification. TPAMI, 2014. 3
-
(2014)
TPAMI
-
-
Akata, Z.1
Perronnin, F.2
Harchaoui, Z.3
Schmid, C.4
-
3
-
-
84898484392
-
Enhancing exemplar SVMs using part level transfer regularization
-
2
-
Y. Aytar and A. Zisserman. Enhancing exemplar SVMs using part level transfer regularization. In BMVC, 2012. 2
-
(2012)
BMVC
-
-
Aytar, Y.1
Zisserman, A.2
-
4
-
-
77949852900
-
Domain adaptation problems: A daSVM classification technique and a circular validation strategy
-
2
-
L. Bruzzone and M. Marconcini. Domain adaptation problems: A daSVM classification technique and a circular validation strategy. TPAMI, 2010. 2
-
(2010)
TPAMI
-
-
Bruzzone, L.1
Marconcini, M.2
-
5
-
-
84898803720
-
Neil: Extracting visual knowledge from web data
-
2, 6
-
X. Chen, A. Shrivastava, and A. Gupta. Neil: Extracting visual knowledge from web data. In ICCV, 2013. 2, 6
-
(2013)
ICCV
-
-
Chen, X.1
Shrivastava, A.2
Gupta, A.3
-
6
-
-
77956006912
-
Exploiting hierarchical context on a large database of object categories
-
5
-
M. Choi, J. Lim, A. Torralba, and A. Willsky. Exploiting hierarchical context on a large database of object categories. In CVPR, 2010. 5
-
(2010)
CVPR
-
-
Choi, M.1
Lim, J.2
Torralba, A.3
Willsky, A.4
-
7
-
-
56449108037
-
Hierarchical sampling for active learning
-
2, 7, 8
-
S. Dasgupta and D. Hsu. Hierarchical sampling for active learning. In ICML, 2008. 2, 7, 8
-
(2008)
ICML
-
-
Dasgupta, S.1
Hsu, D.2
-
8
-
-
84860513476
-
Frustratingly easy domain adaptation
-
2
-
H. Daumé III. Frustratingly easy domain adaptation. In ACL, 2007. 2
-
(2007)
ACL
-
-
Daumé, H.1
-
9
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
1, 5
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR, 2009. 1, 5
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
10
-
-
84973880757
-
Selecting influential examples: Active learning with expected model output changes
-
1, 2, 7, 8
-
A. Freytag, E. Rodner, and J. Denzler. Selecting influential examples: Active learning with expected model output changes. In ECCV, 2014. 1, 2, 7, 8
-
(2014)
ECCV
-
-
Freytag, A.1
Rodner, E.2
Denzler, J.3
-
11
-
-
84898958665
-
Devise: A deep visual-semantic embedding model
-
1, 2
-
A. FRome, G. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato, and T. Mikolov. Devise: A deep visual-semantic embedding model. In NIPS, 2013. 1, 2
-
(2013)
NIPS
-
-
Frome, A.1
Corrado, G.2
Shlens, J.3
Bengio, S.4
Dean, J.5
Ranzato, M.6
Mikolov, T.7
-
12
-
-
77951294698
-
Gaussian processes for object categorization
-
7, 8
-
A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell. Gaussian processes for object categorization. IJCV, 2010. 7, 8
-
(2010)
IJCV
-
-
Kapoor, A.1
Grauman, K.2
Urtasun, R.3
Darrell, T.4
-
13
-
-
84856645721
-
Actively selecting annotations among objects and attributes
-
1, 2
-
A. Kovashka, S. Vijayanarasimhan, and K. Grauman. Actively selecting annotations among objects and attributes. In ICCV, 2011. 1, 2
-
(2011)
ICCV
-
-
Kovashka, A.1
Vijayanarasimhan, S.2
Grauman, K.3
-
14
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
5
-
A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. 5
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
15
-
-
84925402963
-
Attributebased classification for zero-shot learning of object categories
-
1, 2, 6
-
C. Lampert, H. Nickisch, and S. Harmeling. Attributebased classification for zero-shot learning of object categories. TPAMI, 2013. 1, 2, 6
-
(2013)
TPAMI
-
-
Lampert, C.1
Nickisch, H.2
Harmeling, S.3
-
16
-
-
84973888266
-
Attributes make sense on segmented objects
-
1, 2
-
Z. Li, E. Gavves, T. Mensink, and C. Snoek. Attributes make sense on segmented objects. In ECCV, 2014. 1, 2
-
(2014)
ECCV
-
-
Li, Z.1
Gavves, E.2
Mensink, T.3
Snoek, C.4
-
17
-
-
85162555049
-
Transfer learning by borrowing examples for multiclass object detection
-
2
-
J. J. Lim, R. Salakhutdinov, and A. Torralba. Transfer learning by borrowing examples for multiclass object detection. In NIPS, 2011. 2
-
(2011)
NIPS
-
-
Lim, J.J.1
Salakhutdinov, R.2
Torralba, A.3
-
18
-
-
84937834115
-
Microsoft COCO: Common objects in context
-
5
-
T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft COCO: common objects in context. In ECCV, 2014. 5
-
(2014)
ECCV
-
-
Lin, T.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
19
-
-
84856679717
-
Multiclass transfer learning from unconstrained priors
-
2
-
J. Luo, T. Tommasi, and B. Caputo. Multiclass transfer learning from unconstrained priors. In ICCV, 2011. 2
-
(2011)
ICCV
-
-
Luo, J.1
Tommasi, T.2
Caputo, B.3
-
20
-
-
84911410734
-
Costa: Co-occurrence statistics for zero-shot classification
-
1, 2, 3, 5, 6, 7
-
T. Mensink, E. Gavves, and C. Snoek. Costa: Co-occurrence statistics for zero-shot classification. In CVPR, 2014. 1, 2, 3, 5, 6, 7
-
(2014)
CVPR
-
-
Mensink, T.1
Gavves, E.2
Snoek, C.3
-
22
-
-
85083952206
-
Zero-shot learning by convex combination of semantic embeddings
-
1, 2, 3
-
M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. FRome, G. Corrado, and J. Dean. Zero-shot learning by convex combination of semantic embeddings. In ICLR, 2014. 1, 2, 3
-
(2014)
ICLR
-
-
Norouzi, M.1
Mikolov, T.2
Bengio, S.3
Singer, Y.4
Shlens, J.5
Frome, A.6
Corrado, G.7
Dean, J.8
-
23
-
-
77956031473
-
A survey on transfer learning
-
1, 2
-
S. Pan and Q. Yang. A survey on transfer learning. TKDE, 2010. 1, 2
-
(2010)
TKDE
-
-
Pan, S.1
Yang, Q.2
-
24
-
-
77955989949
-
What helps where-and why? Semantic relatedness for knowledge transfer
-
2, 6
-
M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, and B. Schiele. What helps where-and why? semantic relatedness for knowledge transfer. In CVPR, 2010. 2, 6
-
(2010)
CVPR
-
-
Rohrbach, M.1
Stark, M.2
Szarvas, G.3
Gurevych, I.4
Schiele, B.5
-
25
-
-
0007696417
-
Less is more: Active learning with support vector machines
-
2, 4, 6
-
G. Schohn and D. Cohn. Less is more: Active learning with support vector machines. In ICML, 2000. 2, 4, 6
-
(2000)
ICML
-
-
Schohn, G.1
Cohn, D.2
-
27
-
-
84898938559
-
Zero-shot learning through cross-modal transfer
-
1, 2
-
R. Socher, M. Ganjoo, C. Manning, and A. Ng. Zero-shot learning through cross-modal transfer. In NIPS, 2013. 1, 2
-
(2013)
NIPS
-
-
Socher, R.1
Ganjoo, M.2
Manning, C.3
Ng, A.4
-
28
-
-
84900528296
-
Learning categories from few examples with multi model knowledge transfer
-
2
-
T. Tommasi, F. Orabona, and B. Caputo. Learning categories from few examples with multi model knowledge transfer. TPAMI, 2014. 2
-
(2014)
TPAMI
-
-
Tommasi, T.1
Orabona, F.2
Caputo, B.3
-
29
-
-
84898409329
-
Leveraging over prior knowledge for online learning of visual categories
-
1, 2
-
T. Tommasi, F. Orabona, M. Kaboli, and B. Caputo. Leveraging over prior knowledge for online learning of visual categories. In BMVC, 2012. 1, 2
-
(2012)
BMVC
-
-
Tommasi, T.1
Orabona, F.2
Kaboli, M.3
Caputo, B.4
-
30
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
2, 6
-
S. Tong and D. Koller. Support vector machine active learning with applications to text classification. JMLR, 2002. 2, 6
-
(2002)
JMLR
-
-
Tong, S.1
Koller, D.2
-
31
-
-
84866706762
-
Active learning for semantic segmentation with expected change
-
1, 2
-
A. Vezhnevets, J. Buhmann, and V. Ferrari. Active learning for semantic segmentation with expected change. In CVPR, 2012. 1, 2
-
(2012)
CVPR
-
-
Vezhnevets, A.1
Buhmann, J.2
Ferrari, V.3
-
32
-
-
80052905596
-
Large-scale live active learning: Training object detectors with crawled data and crowds
-
2, 4, 6
-
S. Vijayanarasimhan and K. Grauman. Large-scale live active learning: Training object detectors with crawled data and crowds. In CVPR, 2011. 2, 4, 6
-
(2011)
CVPR
-
-
Vijayanarasimhan, S.1
Grauman, K.2
-
33
-
-
77955994660
-
Far-sighted active learning on a budget for image and video recognition
-
1, 2, 7, 8
-
S. Vijayanarasimhan, P. Jain, and K. Grauman. Far-sighted active learning on a budget for image and video recognition. In CVPR, 2010. 1, 2, 7, 8
-
(2010)
CVPR
-
-
Vijayanarasimhan, S.1
Jain, P.2
Grauman, K.3
-
34
-
-
14344254639
-
Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions
-
2
-
X. Zhu, J. Lafferty, and Z. Ghahramani. Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions. In ICML w'shop, 2003. 2
-
(2003)
ICML w'Shop
-
-
Zhu, X.1
Lafferty, J.2
Ghahramani, Z.3
|