메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 2731-2739

Active transfer learning with zero-shot priors: Reusing past datasets for future tasks

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; COMPUTER VISION; LEARNING ALGORITHMS;

EID: 84973923098     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.313     Document Type: Conference Paper
Times cited : (75)

References (34)
  • 1
    • 84887338331 scopus 로고    scopus 로고
    • Labelembedding for attribute-based classification
    • 1, 2, 3, 5
    • Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Labelembedding for attribute-based classification. In CVPR, 2013. 1, 2, 3, 5
    • (2013) CVPR
    • Akata, Z.1    Perronnin, F.2    Harchaoui, Z.3    Schmid, C.4
  • 2
    • 84894567325 scopus 로고    scopus 로고
    • Good practice in large-scale learning for image classification
    • 3
    • Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Good practice in large-scale learning for image classification. TPAMI, 2014. 3
    • (2014) TPAMI
    • Akata, Z.1    Perronnin, F.2    Harchaoui, Z.3    Schmid, C.4
  • 3
    • 84898484392 scopus 로고    scopus 로고
    • Enhancing exemplar SVMs using part level transfer regularization
    • 2
    • Y. Aytar and A. Zisserman. Enhancing exemplar SVMs using part level transfer regularization. In BMVC, 2012. 2
    • (2012) BMVC
    • Aytar, Y.1    Zisserman, A.2
  • 4
    • 77949852900 scopus 로고    scopus 로고
    • Domain adaptation problems: A daSVM classification technique and a circular validation strategy
    • 2
    • L. Bruzzone and M. Marconcini. Domain adaptation problems: A daSVM classification technique and a circular validation strategy. TPAMI, 2010. 2
    • (2010) TPAMI
    • Bruzzone, L.1    Marconcini, M.2
  • 5
    • 84898803720 scopus 로고    scopus 로고
    • Neil: Extracting visual knowledge from web data
    • 2, 6
    • X. Chen, A. Shrivastava, and A. Gupta. Neil: Extracting visual knowledge from web data. In ICCV, 2013. 2, 6
    • (2013) ICCV
    • Chen, X.1    Shrivastava, A.2    Gupta, A.3
  • 6
    • 77956006912 scopus 로고    scopus 로고
    • Exploiting hierarchical context on a large database of object categories
    • 5
    • M. Choi, J. Lim, A. Torralba, and A. Willsky. Exploiting hierarchical context on a large database of object categories. In CVPR, 2010. 5
    • (2010) CVPR
    • Choi, M.1    Lim, J.2    Torralba, A.3    Willsky, A.4
  • 7
    • 56449108037 scopus 로고    scopus 로고
    • Hierarchical sampling for active learning
    • 2, 7, 8
    • S. Dasgupta and D. Hsu. Hierarchical sampling for active learning. In ICML, 2008. 2, 7, 8
    • (2008) ICML
    • Dasgupta, S.1    Hsu, D.2
  • 8
    • 84860513476 scopus 로고    scopus 로고
    • Frustratingly easy domain adaptation
    • 2
    • H. Daumé III. Frustratingly easy domain adaptation. In ACL, 2007. 2
    • (2007) ACL
    • Daumé, H.1
  • 10
    • 84973880757 scopus 로고    scopus 로고
    • Selecting influential examples: Active learning with expected model output changes
    • 1, 2, 7, 8
    • A. Freytag, E. Rodner, and J. Denzler. Selecting influential examples: Active learning with expected model output changes. In ECCV, 2014. 1, 2, 7, 8
    • (2014) ECCV
    • Freytag, A.1    Rodner, E.2    Denzler, J.3
  • 13
    • 84856645721 scopus 로고    scopus 로고
    • Actively selecting annotations among objects and attributes
    • 1, 2
    • A. Kovashka, S. Vijayanarasimhan, and K. Grauman. Actively selecting annotations among objects and attributes. In ICCV, 2011. 1, 2
    • (2011) ICCV
    • Kovashka, A.1    Vijayanarasimhan, S.2    Grauman, K.3
  • 14
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 5
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. 5
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 15
    • 84925402963 scopus 로고    scopus 로고
    • Attributebased classification for zero-shot learning of object categories
    • 1, 2, 6
    • C. Lampert, H. Nickisch, and S. Harmeling. Attributebased classification for zero-shot learning of object categories. TPAMI, 2013. 1, 2, 6
    • (2013) TPAMI
    • Lampert, C.1    Nickisch, H.2    Harmeling, S.3
  • 16
    • 84973888266 scopus 로고    scopus 로고
    • Attributes make sense on segmented objects
    • 1, 2
    • Z. Li, E. Gavves, T. Mensink, and C. Snoek. Attributes make sense on segmented objects. In ECCV, 2014. 1, 2
    • (2014) ECCV
    • Li, Z.1    Gavves, E.2    Mensink, T.3    Snoek, C.4
  • 17
    • 85162555049 scopus 로고    scopus 로고
    • Transfer learning by borrowing examples for multiclass object detection
    • 2
    • J. J. Lim, R. Salakhutdinov, and A. Torralba. Transfer learning by borrowing examples for multiclass object detection. In NIPS, 2011. 2
    • (2011) NIPS
    • Lim, J.J.1    Salakhutdinov, R.2    Torralba, A.3
  • 19
    • 84856679717 scopus 로고    scopus 로고
    • Multiclass transfer learning from unconstrained priors
    • 2
    • J. Luo, T. Tommasi, and B. Caputo. Multiclass transfer learning from unconstrained priors. In ICCV, 2011. 2
    • (2011) ICCV
    • Luo, J.1    Tommasi, T.2    Caputo, B.3
  • 20
    • 84911410734 scopus 로고    scopus 로고
    • Costa: Co-occurrence statistics for zero-shot classification
    • 1, 2, 3, 5, 6, 7
    • T. Mensink, E. Gavves, and C. Snoek. Costa: Co-occurrence statistics for zero-shot classification. In CVPR, 2014. 1, 2, 3, 5, 6, 7
    • (2014) CVPR
    • Mensink, T.1    Gavves, E.2    Snoek, C.3
  • 23
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • 1, 2
    • S. Pan and Q. Yang. A survey on transfer learning. TKDE, 2010. 1, 2
    • (2010) TKDE
    • Pan, S.1    Yang, Q.2
  • 24
    • 77955989949 scopus 로고    scopus 로고
    • What helps where-and why? Semantic relatedness for knowledge transfer
    • 2, 6
    • M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, and B. Schiele. What helps where-and why? semantic relatedness for knowledge transfer. In CVPR, 2010. 2, 6
    • (2010) CVPR
    • Rohrbach, M.1    Stark, M.2    Szarvas, G.3    Gurevych, I.4    Schiele, B.5
  • 25
    • 0007696417 scopus 로고    scopus 로고
    • Less is more: Active learning with support vector machines
    • 2, 4, 6
    • G. Schohn and D. Cohn. Less is more: Active learning with support vector machines. In ICML, 2000. 2, 4, 6
    • (2000) ICML
    • Schohn, G.1    Cohn, D.2
  • 27
    • 84898938559 scopus 로고    scopus 로고
    • Zero-shot learning through cross-modal transfer
    • 1, 2
    • R. Socher, M. Ganjoo, C. Manning, and A. Ng. Zero-shot learning through cross-modal transfer. In NIPS, 2013. 1, 2
    • (2013) NIPS
    • Socher, R.1    Ganjoo, M.2    Manning, C.3    Ng, A.4
  • 28
    • 84900528296 scopus 로고    scopus 로고
    • Learning categories from few examples with multi model knowledge transfer
    • 2
    • T. Tommasi, F. Orabona, and B. Caputo. Learning categories from few examples with multi model knowledge transfer. TPAMI, 2014. 2
    • (2014) TPAMI
    • Tommasi, T.1    Orabona, F.2    Caputo, B.3
  • 29
    • 84898409329 scopus 로고    scopus 로고
    • Leveraging over prior knowledge for online learning of visual categories
    • 1, 2
    • T. Tommasi, F. Orabona, M. Kaboli, and B. Caputo. Leveraging over prior knowledge for online learning of visual categories. In BMVC, 2012. 1, 2
    • (2012) BMVC
    • Tommasi, T.1    Orabona, F.2    Kaboli, M.3    Caputo, B.4
  • 30
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • 2, 6
    • S. Tong and D. Koller. Support vector machine active learning with applications to text classification. JMLR, 2002. 2, 6
    • (2002) JMLR
    • Tong, S.1    Koller, D.2
  • 31
    • 84866706762 scopus 로고    scopus 로고
    • Active learning for semantic segmentation with expected change
    • 1, 2
    • A. Vezhnevets, J. Buhmann, and V. Ferrari. Active learning for semantic segmentation with expected change. In CVPR, 2012. 1, 2
    • (2012) CVPR
    • Vezhnevets, A.1    Buhmann, J.2    Ferrari, V.3
  • 32
    • 80052905596 scopus 로고    scopus 로고
    • Large-scale live active learning: Training object detectors with crawled data and crowds
    • 2, 4, 6
    • S. Vijayanarasimhan and K. Grauman. Large-scale live active learning: Training object detectors with crawled data and crowds. In CVPR, 2011. 2, 4, 6
    • (2011) CVPR
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 33
    • 77955994660 scopus 로고    scopus 로고
    • Far-sighted active learning on a budget for image and video recognition
    • 1, 2, 7, 8
    • S. Vijayanarasimhan, P. Jain, and K. Grauman. Far-sighted active learning on a budget for image and video recognition. In CVPR, 2010. 1, 2, 7, 8
    • (2010) CVPR
    • Vijayanarasimhan, S.1    Jain, P.2    Grauman, K.3
  • 34
    • 14344254639 scopus 로고    scopus 로고
    • Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions
    • 2
    • X. Zhu, J. Lafferty, and Z. Ghahramani. Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions. In ICML w'shop, 2003. 2
    • (2003) ICML w'Shop
    • Zhu, X.1    Lafferty, J.2    Ghahramani, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.