메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 3112-3121

Harnessing Object and Scene Semantics for Large-Scale Video Understanding

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX NETWORKS; COMPUTER VISION; NETWORK LAYERS; PATTERN RECOGNITION;

EID: 84986250477     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.339     Document Type: Conference Paper
Times cited : (107)

References (42)
  • 1
    • 0023322501 scopus 로고
    • Recognition by components-a theory of human image understanding
    • I. Biederman. Recognition by components-a theory of human image understanding. Psychological Review, 1987. 3.1
    • (1987) Psychological Review , pp. 3-10
    • Biederman, I.1
  • 5
    • 84986246085 scopus 로고    scopus 로고
    • Semi-supervised vocabulary-informed learning
    • Y. Fu and L. Sigal. Semi-supervised vocabulary-informed learning. In CVPR, 2016.
    • (2016) CVPR
    • Fu, Y.1    Sigal, L.2
  • 6
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 7
    • 84959216468 scopus 로고    scopus 로고
    • Activitynet: A large-scale video benchmark for human activity understanding
    • 4.1, 4.2
    • F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles. Activitynet: A large-scale video benchmark for human activity understanding. In CVPR, 2015. 1, 4.1, 4.2
    • (2015) CVPR , pp. 1
    • Heilbron, F.C.1    Escorcia, V.2    Ghanem, B.3    Niebles, J.C.4
  • 8
    • 84937837455 scopus 로고    scopus 로고
    • A unified semantic embedding: Relating taxonomies and attributes
    • S. J. Hwang and L. Sigal. A unified semantic embedding: relating taxonomies and attributes. In NIPS, 2014.
    • (2014) NIPS
    • Hwang, S.J.1    Sigal, L.2
  • 9
    • 79958737093 scopus 로고    scopus 로고
    • Object, scene and actions: Combining multiple features for human action recognition
    • N. Ikizler-Cinbis and S. Sclaroff. Object, scene and actions: Combining multiple features for human action recognition. In ECCV, 2010.
    • (2010) ECCV
    • Ikizler-Cinbis, N.1    Sclaroff, S.2
  • 10
    • 84959235126 scopus 로고    scopus 로고
    • What do 15,000 object categories tell us about classifying and localizing actions?
    • M. Jain, J. C. van Gemert, and C. G. Snoek. What do 15,000 object categories tell us about classifying and localizing actions? In CVPR, 2015.
    • (2015) CVPR
    • Jain, M.1    Van Gemert, J.C.2    Snoek, C.G.3
  • 12
    • 84986243687 scopus 로고    scopus 로고
    • Exploiting feature and class relationships in video categorization with regularized deep neural networks
    • Y.-G. Jiang, Z. Wu, J. Wang, X. Xue, and S.-F. Chang. Exploiting feature and class relationships in video categorization with regularized deep neural networks. CoRR, 2015. 1, 4.1, 4.2
    • (2015) CoRR , vol.1
    • Jiang, Y.-G.1    Wu, Z.2    Wang, J.3    Xue, X.4    Chang, S.-F.5
  • 14
    • 84856682691 scopus 로고    scopus 로고
    • HMDB: A large video database for human motion recognition
    • H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: A large video database for human motion recognition. In ICCV, 2011. 4.1
    • (2011) ICCV
    • Kuehne, H.1    Jhuang, H.2    Garrote, E.3    Poggio, T.4    Serre, T.5
  • 15
    • 84925402963 scopus 로고    scopus 로고
    • Attributebased classification for zero-shot visual object categorization
    • 4.4
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Attributebased classification for zero-shot visual object categorization. IEEE TPAMI, 2013. 1, 1, 4.4
    • (2013) IEEE TPAMI , vol.1 , pp. 1
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 16
    • 85162513516 scopus 로고    scopus 로고
    • Object bank: A high-level image representation for scene classification & semantic feature sparsification
    • L.-J. Li, H. Su, E. P. Xing, and L. Fei-Fei. Object bank: A high-level image representation for scene classification & semantic feature sparsification. In NIPS, 2010.
    • (2010) NIPS
    • Li, L.-J.1    Su, H.2    Xing, E.P.3    Fei-Fei, L.4
  • 19
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, 2013. 3.3, 4.1
    • (2013) NIPS , vol.3 , Issue.3
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.4    Dean, J.5
  • 23
    • 84961289992 scopus 로고    scopus 로고
    • Glove: Global vectors for word representation
    • J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In EMNLP, 2014. 3.3
    • (2014) EMNLP , vol.3 , Issue.3
    • Pennington, J.1    Socher, R.2    Manning, C.D.3
  • 25
    • 84867844062 scopus 로고    scopus 로고
    • Weakly supervised learning of interactions between humans and objects
    • A. Prest, C. Schmid, and V. Ferrari. Weakly supervised learning of interactions between humans and objects. IEEE TPAMI, 2012.
    • (2012) IEEE TPAMI
    • Prest, A.1    Schmid, C.2    Ferrari, V.3
  • 26
    • 77955989949 scopus 로고    scopus 로고
    • What helps where-and why? Semantic relatedness for knowledge transfer
    • M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, and B. Schiele. What helps where-and why? semantic relatedness for knowledge transfer. In CVPR, 2010. 3.3
    • (2010) CVPR , vol.3 , Issue.3
    • Rohrbach, M.1    Stark, M.2    Szarvas, G.3    Gurevych, I.4    Schiele, B.5
  • 27
    • 84866718894 scopus 로고    scopus 로고
    • Action bank: A high-level representation of activity in video
    • S. Sadanand and J. Corso. Action bank: A high-level representation of activity in video. In CVPR, 2012.
    • (2012) CVPR
    • Sadanand, S.1    Corso, J.2
  • 28
    • 84883487458 scopus 로고    scopus 로고
    • Image classification with the fisher vector: Theory and practice
    • J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification with the fisher vector: Theory and practice. IJCV, 2013.
    • (2013) IJCV
    • Sánchez, J.1    Perronnin, F.2    Mensink, T.3    Verbeek, J.4
  • 29
    • 84887325615 scopus 로고    scopus 로고
    • Similarity constrained latent support vector machine: An application to weakly supervised action classification
    • N. Shapovalova, A. Vahdat, K. Cannons, T. Lan, and G. Mori. Similarity constrained latent support vector machine: An application to weakly supervised action classification. In ECCV, 2012.
    • (2012) ECCV
    • Shapovalova, N.1    Vahdat, A.2    Cannons, K.3    Lan, T.4    Mori, G.5
  • 30
    • 85083953896 scopus 로고    scopus 로고
    • Deep inside convolutional networks: Visualising image classification models and saliency maps
    • K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. In ICLR. 2014. 2, 3.2
    • (2014) ICLR
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 31
    • 84937862424 scopus 로고    scopus 로고
    • Two-stream convolutional networks for action recognition in videos
    • K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, 2014.
    • (2014) NIPS
    • Simonyan, K.1    Zisserman, A.2
  • 32
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015. 2, 3.1
    • (2015) ICLR , vol.2 , pp. 3-10
    • Simonyan, K.1    Zisserman, A.2
  • 33
    • 84904972001 scopus 로고    scopus 로고
    • UCF101: A dataset of 101 human actions classes from videos in the wild
    • K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dataset of 101 human actions classes from videos in the wild. CRCVTR-12-01, 2012. 4.1
    • (2012) CRCVTR-12-01
    • Soomro, K.1    Zamir, A.R.2    Shah, M.3
  • 34
    • 84973865953 scopus 로고    scopus 로고
    • Learning spatiotemporal features with 3d convolutional networks
    • D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with 3d convolutional networks. In ICCV, 2015.
    • (2015) ICCV
    • Tran, D.1    Bourdev, L.2    Fergus, R.3    Torresani, L.4    Paluri, M.5
  • 35
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013.
    • (2013) ICCV
    • Wang, H.1    Schmid, C.2
  • 36
    • 84990022067 scopus 로고    scopus 로고
    • Modeling spatial-temporal clues in a hybrid deep learning framework for video classification
    • Z. Wu, X. Wang, Y.-G. Jiang, H. Ye, and X. Xue. Modeling spatial-temporal clues in a hybrid deep learning framework for video classification. In ACM MM, 2015.
    • (2015) ACM MM
    • Wu, Z.1    Wang, X.2    Jiang, Y.-G.3    Ye, H.4    Xue, X.5
  • 37
    • 84959236591 scopus 로고    scopus 로고
    • Can humans fly? Action understanding with multiple classes of actors
    • C. Xu, S.-H. Hsieh, C. Xiong, and J. J. Corso. Can humans fly? action understanding with multiple classes of actors. In CVPR, 2015.
    • (2015) CVPR
    • Xu, C.1    Hsieh, S.-H.2    Xiong, C.3    Corso, J.J.4
  • 38
    • 84887368641 scopus 로고    scopus 로고
    • Designing category-level attributes for discriminative visual recognition
    • F. X. Yu, L. Cao, R. S. Feris, J. R. Smith, and S.-F. Chang. Designing category-level attributes for discriminative visual recognition. In CVPR, 2013. 3.3
    • (2013) CVPR , pp. 3
    • Yu, F.X.1    Cao, L.2    Feris, R.S.3    Smith, J.R.4    Chang, S.-F.5
  • 39
    • 84921476116 scopus 로고    scopus 로고
    • Fergus:. Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus:. Visualizing and understanding convolutional networks. In ECCV. 2014.
    • (2014) ECCV
    • Zeiler, M.D.1
  • 41
    • 84937964578 scopus 로고    scopus 로고
    • Learning deep features for scene recognition using places database
    • B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition using places database. In NIPS. 2014. 3.1
    • (2014) NIPS , pp. 3-10
    • Zhou, B.1    Lapedriza, A.2    Xiao, J.3    Torralba, A.4    Oliva, A.5
  • 42
    • 84952058866 scopus 로고    scopus 로고
    • Reasoning about object affordances in a knowledge base representation
    • Y. Zhu, A. Fathi, and L. Fei-Fei. Reasoning about object affordances in a knowledge base representation. In ECCV, 2014.
    • (2014) ECCV
    • Zhu, Y.1    Fathi, A.2    Fei-Fei, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.