메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 46-55

What do 15,000 object categories tell us about classifying and localizing actions?

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; ENCODING (SYMBOLS); IMAGE RECOGNITION; MOTION ESTIMATION;

EID: 84959235126     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298599     Document Type: Conference Paper
Times cited : (195)

References (60)
  • 1
    • 84911446849 scopus 로고    scopus 로고
    • Multi-view super vector for action recognition
    • Z. Cai, L. Wang, X. Peng, and Y. Qiao. Multi-view super vector for action recognition. In CVPR, 2014
    • (2014) CVPR
    • Cai, Z.1    Wang, L.2    Peng, X.3    Qiao, Y.4
  • 2
    • 77955989314 scopus 로고    scopus 로고
    • Cross-dataset action detection
    • L. Cao, Z. Liu, and T. S. Huang. Cross-dataset action detection. In CVPR, 2010
    • (2010) CVPR
    • Cao, L.1    Liu, Z.2    Huang, T.S.3
  • 3
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets
    • K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014
    • (2014) BMVC
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 4
    • 34948855444 scopus 로고    scopus 로고
    • Human detection using oriented histograms of flow and appearance
    • N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented histograms of flow and appearance. In ECCV, 2006
    • (2006) ECCV
    • Dalal, N.1    Triggs, B.2    Schmid, C.3
  • 5
    • 80052876786 scopus 로고    scopus 로고
    • What does classifying more than 10,000 image categories tell us
    • J. Deng, A. C. Berg, K. Li, and L. Fei-Fei. What does classifying more than 10,000 image categories tell us? In ECCV, 2010
    • (2010) ECCV
    • Deng, J.1    Berg, A.C.2    Li, K.3    Fei-Fei, L.4
  • 7
    • 84900116262 scopus 로고    scopus 로고
    • Evaluation of color spatio-temporal interest points for human action recognition
    • I. Everts, J. C. van Gemert, and T. Gevers. Evaluation of color spatio-temporal interest points for human action recognition. IEEE TIP, 23(4):1569-1580, 2014
    • (2014) IEEE TIP , vol.23 , Issue.4 , pp. 1569-1580
    • Everts, I.1    Van Gemert, J.C.2    Gevers, T.3
  • 9
    • 84898405815 scopus 로고    scopus 로고
    • Recognizing activities with cluster-trees of tracklets
    • A. Gaidon, Z. Harchaoui, and C. Schmid. Recognizing activities with cluster-trees of tracklets. In BMVC, 2012
    • (2012) BMVC
    • Gaidon, A.1    Harchaoui, Z.2    Schmid, C.3
  • 10
    • 35148899327 scopus 로고    scopus 로고
    • Objects in action: An approach for combining action understanding and object perception
    • A. Gupta and L. S. Davis. Objects in action: An approach for combining action understanding and object perception. In CVPR, 2007
    • (2007) CVPR
    • Gupta, A.1    Davis, L.S.2
  • 11
    • 77953208298 scopus 로고    scopus 로고
    • Selection and context for action recognition
    • D. Han, L. Bo, and C. Sminchisescu. Selection and context for action recognition. In ICCV, 2009
    • (2009) ICCV
    • Han, D.1    Bo, L.2    Sminchisescu, C.3
  • 12
    • 84951968109 scopus 로고    scopus 로고
    • Improving human action recognition using score distribution and ranking
    • M. Hoai and A. Zisserman. Improving human action recognition using score distribution and ranking. In ACCV, 2014
    • (2014) ACCV
    • Hoai, M.1    Zisserman, A.2
  • 13
    • 79958737093 scopus 로고    scopus 로고
    • Object, scene and actions: Combining multiple features for human action recognition
    • N. Ikizler-Cinbis and S. Sclaroff. Object, scene and actions: Combining multiple features for human action recognition. In ECCV, 2010
    • (2010) ECCV
    • Ikizler-Cinbis, N.1    Sclaroff, S.2
  • 14
    • 84887398298 scopus 로고    scopus 로고
    • Better exploiting motion for better action recognition
    • M. Jain, H. Jégou, and P. Bouthemy. Better exploiting motion for better action recognition. In CVPR, 2013
    • (2013) CVPR
    • Jain, M.1    Jégou, H.2    Bouthemy, P.3
  • 17
    • 84877645596 scopus 로고    scopus 로고
    • Trajectory-based modeling of human actions with motion reference points
    • Y.-G. Jiang, Q. Dai, X. Xue, W. Liu, and C.-W. Ngo. Trajectory-based modeling of human actions with motion reference points. In ECCV, 2012
    • (2012) ECCV
    • Jiang, Y.-G.1    Dai, Q.2    Xue, X.3    Liu, W.4    Ngo, C.-W.5
  • 19
    • 84898426452 scopus 로고    scopus 로고
    • A spatio-temporal descriptor based on 3d-gradients
    • A. Kläser, M. Marszalek, and C. Schmid. A spatio-temporal descriptor based on 3d-gradients. In BMVC, 2008
    • (2008) BMVC
    • Kläser, A.1    Marszalek, M.2    Schmid, C.3
  • 20
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 22
    • 84863083227 scopus 로고    scopus 로고
    • Discriminative figure-centric models for joint action localization and recognition
    • T. Lan, Y. Wang, and G. Mori. Discriminative figure-centric models for joint action localization and recognition. In ICCV, 2011
    • (2011) ICCV
    • Lan, T.1    Wang, Y.2    Mori, G.3
  • 23
    • 0344551869 scopus 로고    scopus 로고
    • Space-time interest points
    • I. Laptev and T. Lindeberg. Space-time interest points. In ICCV, 2003
    • (2003) ICCV
    • Laptev, I.1    Lindeberg, T.2
  • 25
    • 84877778010 scopus 로고    scopus 로고
    • Recognizing activities by attribute dynamics
    • W. Li and N. Vasconcelos. Recognizing activities by attribute dynamics. In NIPS, 2012
    • (2012) NIPS
    • Li, W.1    Vasconcelos, N.2
  • 26
    • 80052915325 scopus 로고    scopus 로고
    • Recognizing human actions by attributes
    • J. Liu, B. Kuipers, and S. Savarese. Recognizing human actions by attributes. In CVPR, 2011
    • (2011) CVPR
    • Liu, J.1    Kuipers, B.2    Savarese, S.3
  • 28
    • 77953178862 scopus 로고    scopus 로고
    • Trajectons: Action recognition through the motion analysis of tracked features
    • P. Matikainen, M. Hebert, and R. Sukthankar. Trajectons: Action recognition through the motion analysis of tracked features. In ICCV Workshop, 2009
    • (2009) ICCV Workshop
    • Matikainen, P.1    Hebert, M.2    Sukthankar, R.3
  • 30
    • 84898791167 scopus 로고    scopus 로고
    • Action and Event Recognition with Fisher Vectors on a Compact Feature Set
    • D. Oneata, J. Verbeek, and C. Schmid. Action and Event Recognition with Fisher Vectors on a Compact Feature Set. In ICCV, 2013
    • (2013) ICCV
    • Oneata, D.1    Verbeek, J.2    Schmid, C.3
  • 32
    • 84959242896 scopus 로고    scopus 로고
    • Boosting vlad with supervised dictionary learning and high-order statistics
    • X. Peng, L. Wang, Y. Qiao, and Q. Peng. Boosting vlad with supervised dictionary learning and high-order statistics. In ECCV, 2014
    • (2014) ECCV
    • Peng, X.1    Wang, L.2    Qiao, Y.3    Peng, Q.4
  • 33
    • 84947130265 scopus 로고    scopus 로고
    • Action recognition with stacked fisher vectors
    • X. Peng, C. Zou, Y. Qiao, and Q. Peng. Action recognition with stacked fisher vectors. In ECCV, 2014
    • (2014) ECCV
    • Peng, X.1    Zou, C.2    Qiao, Y.3    Peng, Q.4
  • 34
    • 79959771606 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV, 2010
    • (2010) ECCV
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 35
    • 84856142160 scopus 로고    scopus 로고
    • Weakly supervised learning of interactions between humans and objects
    • A. Prest, C. Schmid, and V. Ferrari. Weakly supervised learning of interactions between humans and objects. IEEE TPAMI, 34(3):601-614, 2012
    • (2012) IEEE TPAMI , vol.34 , Issue.3 , pp. 601-614
    • Prest, A.1    Schmid, C.2    Ferrari, V.3
  • 36
    • 24644444341 scopus 로고    scopus 로고
    • Automatic annotation of everyday movements
    • D. Ramanan and D. A. Forsyth. Automatic annotation of everyday movements. In NIPS, 2003
    • (2003) NIPS
    • Ramanan, D.1    Forsyth, D.A.2
  • 37
    • 51949084792 scopus 로고    scopus 로고
    • Action MACH: A spatio-temporal maximum average correlation height filter for action recognition
    • M. D. Rodriguez, J. Ahmed, and M. Shah. Action MACH: a spatio-temporal maximum average correlation height filter for action recognition. In CVPR, 2008
    • (2008) CVPR
    • Rodriguez, M.D.1    Ahmed, J.2    Shah, M.3
  • 38
    • 84866718894 scopus 로고    scopus 로고
    • Action bank: A high-level representation of activity in video
    • S. Sadanand and J. J. Corso. Action bank: A high-level representation of activity in video. In CVPR, 2012
    • (2012) CVPR
    • Sadanand, S.1    Corso, J.J.2
  • 39
    • 10044233701 scopus 로고    scopus 로고
    • Recognizing human actions: A local SVM approach
    • C. Schüldt, I. Laptev, and B. Caputo. Recognizing human actions: A local svm approach. In ICPR, 2004
    • (2004) ICPR
    • Schüldt, C.1    Laptev, I.2    Caputo, B.3
  • 40
    • 84887327356 scopus 로고    scopus 로고
    • Sampling strategies for real-time action recognition
    • F. Shi, E. Petriu, and R. Laganiere. Sampling strategies for real-time action recognition. In CVPR, 2013
    • (2013) CVPR
    • Shi, F.1    Petriu, E.2    Laganiere, R.3
  • 41
    • 84893702065 scopus 로고    scopus 로고
    • UCF101: A dataset of 101 human actions classes from videos in the wild
    • K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dataset of 101 human actions classes from videos in the wild. CoRR, 2012
    • (2012) CoRR
    • Soomro, K.1    Zamir, A.R.2    Shah, M.3
  • 42
    • 85026933676 scopus 로고    scopus 로고
    • Discovering object classes from activities
    • A. Srikantha and J. Gall. Discovering object classes from activities. In ECCV, 2014
    • (2014) ECCV
    • Srikantha, A.1    Gall, J.2
  • 43
    • 84898775956 scopus 로고    scopus 로고
    • Active: Activity concept transitions in video event classification
    • C. Sun and R. Nevatia. Active: Activity concept transitions in video event classification. In ICCV, 2013
    • (2013) ICCV
    • Sun, C.1    Nevatia, R.2
  • 44
    • 84887356306 scopus 로고    scopus 로고
    • Spatiotemporal deformable part models for action detection
    • Y. Tian, R. Sukthankar, and M. Shah. Spatiotemporal deformable part models for action detection. In CVPR, 2013
    • (2013) CVPR
    • Tian, Y.1    Sukthankar, R.2    Shah, M.3
  • 45
    • 84898475671 scopus 로고    scopus 로고
    • Feature tracking and motion compensation for action recognition
    • H. Uemura, S. Ishikawa, and K. Mikolajczyk. Feature tracking and motion compensation for action recognition. In BMVC, 2008
    • (2008) BMVC
    • Uemura, H.1    Ishikawa, S.2    Mikolajczyk, K.3
  • 46
    • 84898428599 scopus 로고    scopus 로고
    • Improving bag-offeatures action recognition with non-local cues
    • M. M. Ullah, S. N. Parizi, and I. Laptev. Improving bag-offeatures action recognition with non-local cues. In BMVC, 2010
    • (2010) BMVC
    • Ullah, M.M.1    Parizi, S.N.2    Laptev, I.3
  • 47
    • 84959225242 scopus 로고    scopus 로고
    • Extreme learning machine for large-scale action recognition
    • G. Varol and A. A. Salah. Extreme Learning Machine for Large-Scale Action Recognition. In ECCV workshop, 2014
    • (2014) ECCV Workshop
    • Varol, G.1    Salah, A.A.2
  • 48
    • 84907592231 scopus 로고    scopus 로고
    • Space-variant descriptor sampling for action recognition based on saliency and eye movements
    • E. Vig, M. Dorr, and D. Cox. Space-variant descriptor sampling for action recognition based on saliency and eye movements. In ECCV, 2012
    • (2012) ECCV
    • Vig, E.1    Dorr, M.2    Cox, D.3
  • 51
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • H. Wang and C. Schmid. Action Recognition with Improved Trajectories. In ICCV, 2013
    • (2013) ICCV
    • Wang, H.1    Schmid, C.2
  • 52
    • 84924949079 scopus 로고    scopus 로고
    • LEAR-INRIA submission for the THUMOS workshop
    • H. Wang and C. Schmid. LEAR-INRIA submission for the THUMOS workshop. In ICCV workshop, 2013
    • (2013) ICCV Workshop
    • Wang, H.1    Schmid, C.2
  • 53
    • 84892618164 scopus 로고    scopus 로고
    • Mining motion atoms and phrases for complex action recognition
    • L. Wang, Y. Qiao, and X. Tang. Mining motion atoms and phrases for complex action recognition. In ICCV, 2013
    • (2013) ICCV
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 54
    • 70450196950 scopus 로고    scopus 로고
    • An efficient dense and scale-invariant spatio-temporal interest point detector
    • G. Willems, T. Tuytelaars, and L. van Gool. An efficient dense and scale-invariant spatio-temporal interest point detector. In ECCV, 2008
    • (2008) ECCV
    • Willems, G.1    Tuytelaars, T.2    Van Gool, L.3
  • 55
    • 84911433150 scopus 로고    scopus 로고
    • Towards good practices for action video encoding
    • J. Wu, Y. Zhang, and W. Lin. Towards good practices for action video encoding. In CVPR, 2014
    • (2014) CVPR
    • Wu, J.1    Zhang, Y.2    Lin, W.3
  • 56
    • 80052908096 scopus 로고    scopus 로고
    • Action recognition using context and appearance distribution features
    • X. Wu, D. Xu, L. Duan, and J. Luo. Action recognition using context and appearance distribution features. In CVPR, 2011
    • (2011) CVPR
    • Wu, X.1    Xu, D.2    Duan, L.3    Luo, J.4
  • 57
    • 77955988492 scopus 로고    scopus 로고
    • Modeling mutual context of object and human pose in human-object interaction activities
    • B. Yao and L. Fei-Fei. Modeling mutual context of object and human pose in human-object interaction activities. In CVPR, 2010
    • (2010) CVPR
    • Yao, B.1    Fei-Fei, L.2
  • 58
    • 84856672971 scopus 로고    scopus 로고
    • Human action recognition by learning bases of action attributes and parts
    • B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. Guibas, and L. Fei-Fei. Human action recognition by learning bases of action attributes and parts. In ICCV, 2011
    • (2011) ICCV
    • Yao, B.1    Jiang, X.2    Khosla, A.3    Lin, A.L.4    Guibas, L.5    Fei-Fei, L.6
  • 59
    • 84921476116 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014
    • (2014) ECCV
    • Zeiler, M.D.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.