메뉴 건너뛰기




Volumn 13-17-August-2016, Issue , 2016, Pages 1735-1744

Multi-task feature interaction learning

Author keywords

Feature interaction; Muti task learning; Structured regularization; Tensor norm

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; DATA MINING; LEARNING SYSTEMS; TENSORS;

EID: 84984940227     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2939672.2939834     Document Type: Conference Paper
Times cited : (39)

References (39)
  • 1
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73 (3): 243-272, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 3
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkagethresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle. A fast iterative shrinkagethresholding algorithm for linear inverse problems. SIAM journal on imaging sciences, 2 (1): 183-202, 2009.
    • (2009) SIAM Journal on Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 4
    • 9444270330 scopus 로고    scopus 로고
    • Exploiting task relatedness for multiple task learning
    • Springer
    • S. Ben-David and R. Schuller. Exploiting task relatedness for multiple task learning. In Learning Theory and Kernel Machines, pages 567-580. Springer, 2003.
    • (2003) Learning Theory and Kernel Machines , pp. 567-580
    • Ben-David, S.1    Schuller, R.2
  • 5
  • 6
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends R in Machine Learning, 3 (1): 1-122, 2011.
    • (2011) Foundations and Trends R in Machine Learning , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 7
    • 0028865483 scopus 로고
    • Genetic-environmental interaction in the genesis of aggressivity and conduct disorders
    • R. J. Cadoret, W. R. Yates, G. Woodworth, and M. A. Stewart. Genetic-environmental interaction in the genesis of aggressivity and conduct disorders. Archives of General Psychiatry, 52 (11): 916-924, 1995.
    • (1995) Archives of General Psychiatry , vol.52 , Issue.11 , pp. 916-924
    • Cadoret, R.J.1    Yates, W.R.2    Woodworth, G.3    Stewart, M.A.4
  • 8
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • R. Caruana. Multitask learning. Machine learning, 28 (1): 41-75, 1997.
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 10
    • 84899766043 scopus 로고    scopus 로고
    • A two-graph guided multi-task lasso approach for eqtl mapping
    • X. Chen, X. Shi, X. Xu, Z. Wang, R. Mills, C. Lee, and J. Xu. A two-graph guided multi-task lasso approach for eqtl mapping. In AISTATS, pages 208-217, 2012.
    • (2012) AISTATS , pp. 208-217
    • Chen, X.1    Shi, X.2    Xu, X.3    Wang, Z.4    Mills, R.5    Lee, C.6    Xu, J.7
  • 11
    • 77952558804 scopus 로고    scopus 로고
    • Variable selection with the strong heredity constraint and its oracle property
    • N. H. Choi, W. Li, and J. Zhu. Variable selection with the strong heredity constraint and its oracle property. JASA, 105 (489): 354-364, 2010.
    • (2010) JASA , vol.105 , Issue.489 , pp. 354-364
    • Choi, N.H.1    Li, W.2    Zhu, J.3
  • 13
    • 12244250351 scopus 로고    scopus 로고
    • Regularized multi-task learning
    • ACM
    • T. Evgeniou and M. Pontil. Regularized multi-task learning. In SIGKDD, pages 109-117. ACM, 2004.
    • (2004) SIGKDD , pp. 109-117
    • Evgeniou, T.1    Pontil, M.2
  • 15
    • 79551661156 scopus 로고    scopus 로고
    • Tensor completion and low-n-rank tensor recovery via convex optimization
    • S. Gandy, B. Recht, and I. Yamada. Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Problems, 27 (2): 025010, 2011.
    • (2011) Inverse Problems , vol.27 , Issue.2 , pp. 025010
    • Gandy, S.1    Recht, B.2    Yamada, I.3
  • 16
    • 67649327144 scopus 로고    scopus 로고
    • Interactions between bdnf val66met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety
    • J. Gatt, C. Nemeroff, C. Dobson-Stone, R. Paul, R. Bryant, P. Schofield, E. Gordon, A. Kemp, and L. Williams. Interactions between bdnf val66met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Molecular psychiatry, 14 (7): 681-695, 2009.
    • (2009) Molecular Psychiatry , vol.14 , Issue.7 , pp. 681-695
    • Gatt, J.1    Nemeroff, C.2    Dobson-Stone, C.3    Paul, R.4    Bryant, R.5    Schofield, P.6    Gordon, E.7    Kemp, A.8    Williams, L.9
  • 17
    • 84897545592 scopus 로고    scopus 로고
    • A general iterative shrinkage and thresholding algorithm for nonconvex regularized optimization problems
    • P. Gong, C. Zhang, Z. Lu, J. Z. Huang, and J. Ye. A general iterative shrinkage and thresholding algorithm for nonconvex regularized optimization problems. In ICML, volume 28, page 37, 2013.
    • (2013) ICML , vol.28 , pp. 37
    • Gong, P.1    Zhang, C.2    Lu, Z.3    Huang, J.Z.4    Ye, J.5
  • 18
    • 84907020149 scopus 로고    scopus 로고
    • Efficient multi-task feature learning with calibration
    • ACM
    • P. Gong, J. Zhou, W. Fan, and J. Ye. Efficient multi-task feature learning with calibration. In SIGKDD, pages 761-770. ACM, 2014.
    • (2014) SIGKDD , pp. 761-770
    • Gong, P.1    Zhou, J.2    Fan, W.3    Ye, J.4
  • 19
    • 33845336152 scopus 로고    scopus 로고
    • The balance between heritable and environmental aetiology of human disease
    • K. Hemminki, J. L. Bermejo, and A. Försti. The balance between heritable and environmental aetiology of human disease. Nature Reviews Genetics, 7 (12): 958-965, 2006.
    • (2006) Nature Reviews Genetics , vol.7 , Issue.12 , pp. 958-965
    • Hemminki, K.1    Bermejo, J.L.2    Försti, A.3
  • 20
    • 71149103464 scopus 로고    scopus 로고
    • An accelerated gradient method for trace norm minimization
    • ACM
    • S. Ji and J. Ye. An accelerated gradient method for trace norm minimization. In ICML, pages 457-464. ACM, 2009.
    • (2009) ICML , pp. 457-464
    • Ji, S.1    Ye, J.2
  • 21
    • 77956548668 scopus 로고    scopus 로고
    • Tree-guided group lasso for multitask regression with structured sparsity
    • S. Kim and E. P. Xing. Tree-guided group lasso for multitask regression with structured sparsity. ICML, 2010.
    • (2010) ICML
    • Kim, S.1    Xing, E.P.2
  • 22
    • 84877762791 scopus 로고    scopus 로고
    • Proximal Newton-type methods for convex optimization
    • J. Lee, Y. Sun, and M. Saunders. Proximal newton-type methods for convex optimization. In NIPS, pages 836-844, 2012.
    • (2012) NIPS , pp. 836-844
    • Lee, J.1    Sun, Y.2    Saunders, M.3
  • 23
    • 84907029325 scopus 로고    scopus 로고
    • An efficient algorithm for weak hierarchical lasso
    • ACM
    • Y. Liu, J. Wang, and J. Ye. An efficient algorithm for weak hierarchical lasso. In SIGKDD, pages 283-292. ACM, 2014.
    • (2014) SIGKDD , pp. 283-292
    • Liu, Y.1    Wang, J.2    Ye, J.3
  • 24
    • 77953322499 scopus 로고    scopus 로고
    • Joint covariate selection and joint subspace selection for multiple classification problems
    • G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing, 20 (2): 231-252, 2010.
    • (2010) Statistics and Computing , vol.20 , Issue.2 , pp. 231-252
    • Obozinski, G.1    Taskar, B.2    Jordan, M.I.3
  • 26
    • 78651289934 scopus 로고    scopus 로고
    • Variable selection using adaptive nonlinear interaction structures in high dimensions
    • P. Radchenko and G. M. James. Variable selection using adaptive nonlinear interaction structures in high dimensions. Journal of the American Statistical Association, 105 (492): 1541-1553, 2010.
    • (2010) Journal of the American Statistical Association , vol.105 , Issue.492 , pp. 1541-1553
    • Radchenko, P.1    James, G.M.2
  • 28
    • 84985204924 scopus 로고
    • Organizational commitment, turnover and absenteeism: An examination of direct and interaction effects
    • M. J. Somers. Organizational commitment, turnover and absenteeism: An examination of direct and interaction effects. Journal of Organizational Behavior, 16 (1): 49-58, 1995.
    • (1995) Journal of Organizational Behavior , vol.16 , Issue.1 , pp. 49-58
    • Somers, M.J.1
  • 31
    • 84899031700 scopus 로고    scopus 로고
    • Convex tensor decomposition via structured schatten norm regularization
    • R. Tomioka and T. Suzuki. Convex tensor decomposition via structured schatten norm regularization. In NIPS, pages 1331-1339, 2013.
    • (2013) NIPS , pp. 1331-1339
    • Tomioka, R.1    Suzuki, T.2
  • 32
    • 0035533631 scopus 로고    scopus 로고
    • Convergence of a block coordinate descent method for nondifferentiable minimization
    • P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization. Journal of optimization theory and applications, 109 (3): 475-494, 2001.
    • (2001) Journal of Optimization Theory and Applications , vol.109 , Issue.3 , pp. 475-494
    • Tseng, P.1
  • 35
    • 84936950353 scopus 로고    scopus 로고
    • Orion: Online regularized multi-task regression and its application to ensemble forecasting
    • IEEE
    • J. Xu, P.-N. Tan, and L. Luo. Orion: Online regularized multi-task regression and its application to ensemble forecasting. In ICDM, pages 1061-1066. IEEE, 2014.
    • (2014) ICDM , pp. 1061-1066
    • Xu, J.1    Tan, P.-N.2    Luo, L.3
  • 36
    • 85162375080 scopus 로고    scopus 로고
    • Efficient methods for overlapping group lasso
    • L. Yuan, J. Liu, and J. Ye. Efficient methods for overlapping group lasso. In NIPS, pages 352-360, 2011.
    • (2011) NIPS , pp. 352-360
    • Yuan, L.1    Liu, J.2    Ye, J.3
  • 37
    • 85162027638 scopus 로고    scopus 로고
    • Probabilistic multi-task feature selection
    • Y. Zhang, D.-Y. Yeung, and Q. Xu. Probabilistic multi-task feature selection. In NIPS, pages 2559-2567, 2010.
    • (2010) NIPS , pp. 2559-2567
    • Zhang, Y.1    Yeung, D.-Y.2    Xu, Q.3
  • 38
    • 85162400077 scopus 로고    scopus 로고
    • Clustered multi-task learning via alternating structure optimization
    • J. Zhou, J. Chen, and J. Ye. Clustered multi-task learning via alternating structure optimization. In NIPS, pages 702-710, 2011.
    • (2011) NIPS , pp. 702-710
    • Zhou, J.1    Chen, J.2    Ye, J.3
  • 39
    • 84877334125 scopus 로고    scopus 로고
    • Modeling disease progression via multi-task learning
    • J. Zhou, J. Liu, V. A. Narayan, J. Ye, A. D. N. Initiative, et al. Modeling disease progression via multi-task learning. NeuroImage, 78: 233-248, 2013.
    • (2013) NeuroImage , vol.78 , pp. 233-248
    • Zhou, J.1    Liu, J.2    Narayan, V.A.3    Ye, J.4    Initiative, A.D.N.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.