메뉴 건너뛰기




Volumn 2015-January, Issue January, 2014, Pages 60-69

Factorized Similarity Learning in Networks

Author keywords

Content; Link; Network similarity; Supervised matrix factorization; Supervision

Indexed keywords

DATA MINING; FACTORIZATION; LEARNING SYSTEMS; SEARCH ENGINES; TOPOLOGY;

EID: 84936933121     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2014.115     Document Type: Conference Paper
Times cited : (55)

References (44)
  • 1
    • 77952412927 scopus 로고    scopus 로고
    • Towards systematic design of distance functions for data mining applications
    • ACM
    • C. C. Aggarwal. Towards systematic design of distance functions for data mining applications. In Proceedings of the ninth ACM SIGKDD, pages 9-18. ACM, 2003.
    • (2003) Proceedings of the Ninth ACM SIGKDD , pp. 9-18
    • Aggarwal, C.C.1
  • 2
    • 21844457672 scopus 로고    scopus 로고
    • Learning a mahalanobis metric from equivalence constraints
    • Dec
    • A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning a mahalanobis metric from equivalence constraints. J. Mach. Learn. Res., 6:937-965, Dec. 2005.
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 937-965
    • Bar-Hillel, A.1    Hertz, T.2    Shental, N.3    Weinshall, D.4
  • 3
    • 0034345420 scopus 로고    scopus 로고
    • Nonmonotone spectral projected gradient methods on convex sets
    • E. G. Birgin, J. M. Mart ńez, and M. Raydan. Nonmonotone spectral projected gradient methods on convex sets. SIAM Journal on Optimization, 10(4):1196-1211, 2000.
    • (2000) SIAM Journal on Optimization , vol.10 , Issue.4 , pp. 1196-1211
    • Birgin, E.G.1    Martńez, J.M.2    Raydan, M.3
  • 5
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • J.-F. Cai, E. J. Candés, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4):1956-1982, 2010.
    • (2010) SIAM Journal on Optimization , vol.20 , Issue.4 , pp. 1956-1982
    • Cai, J.-F.1    Candés, E.J.2    Shen, Z.3
  • 8
    • 37549003336 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • Jan
    • J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. Commun. ACM, 51(1):107-113, Jan. 2008.
    • (2008) Commun. ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 9
    • 80052674988 scopus 로고    scopus 로고
    • Probabilistic topic models with biased propagation on heterogeneous information networks
    • H. Deng, J. Han, B. Zhao, Y.Yu, and C. X. Lin. Probabilistic topic models with biased propagation on heterogeneous information networks. In SIGKDD, pages 1271-1279, 2011.
    • (2011) SIGKDD , pp. 1271-1279
    • Deng, H.1    Han, J.2    Zhao, B.3    Yu, Y.4    Lin, C.X.5
  • 10
    • 84983219752 scopus 로고    scopus 로고
    • Relational link-based ranking
    • F. Geerts, H. Mannila, and E. Terzi. Relational link-based ranking. In VLDB, pages 552-563, 2004.
    • (2004) VLDB , pp. 552-563
    • Geerts, F.1    Mannila, H.2    Terzi, E.3
  • 12
    • 0023860607 scopus 로고
    • A successive projection method
    • S.-P. Han. A successive projection method. Mathematical Programming, 40(1-3):1-14, 1988.
    • (1988) Mathematical Programming , vol.40 , Issue.1-3 , pp. 1-14
    • Han, S.-P.1
  • 13
    • 51949106897 scopus 로고    scopus 로고
    • Semi-supervised distance metric learning for collaborative image retrieval. Year =2008
    • S. C. H. Hoi, W. Liu, and S.-F. Chang. Semi-supervised distance metric learning for collaborative image retrieval. year = 2008. In CVPR. IEEE Computer Society.
    • CVPR. IEEE Computer Society
    • Hoi, S.C.H.1    Liu, W.2    Chang, S.-F.3
  • 14
    • 0242625250 scopus 로고    scopus 로고
    • Simrank: A measure of structural-context similarity
    • G. Jeh and J. Widom. Simrank: A measure of structural-context similarity. In SIGKDD, pages 538-543, 2002.
    • (2002) SIGKDD , pp. 538-543
    • Jeh, G.1    Widom, J.2
  • 15
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):30-37, 2009.
    • (2009) Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 16
    • 0003939997 scopus 로고    scopus 로고
    • The laplace distribution and generalizations: A revisit with applications to communications, exonomics, engineering, and finance
    • S. Kotz, T. Kozubowski, and K. Podgorski. The Laplace Distribution and Generalizations: A Revisit With Applications to Communications, Exonomics, Engineering, and Finance. Progress in Mathematics Series. Birkhaüser Boston, 2001.
    • (2001) Progress in Mathematics Series. Birkhaüser Boston
    • Kotz, S.1    Kozubowski, T.2    Podgorski, K.3
  • 18
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects by nonnegative matrix factorization. Nature, 401(6755):788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 19
    • 84887324982 scopus 로고    scopus 로고
    • Learning locally-Adaptive decision functions for person verification
    • Z. Li, S. Chang, F. Liang, T. S. Huang, L. Cao, and J. R. Smith. Learning locally-Adaptive decision functions for person verification. In CVPR, 2013.
    • (2013) CVPR
    • Li, Z.1    Chang, S.2    Liang, F.3    Huang, T.S.4    Cao, L.5    Smith, R.J.6
  • 21
    • 70450227472 scopus 로고    scopus 로고
    • Cros s-media manifold learning for image retrieval and annotation
    • In M. S. Lew, A. D. Bimbo, and E. M. Bakker, editors ACM
    • X. Liu, R. Ji, H. Yao, P. Xu, X. Sun, and T. Liu. Cros s-media manifold learning for image retrieval and annotation. In M. S. Lew, A. D. Bimbo, and E. M. Bakker, editors, Multimedia Information Retrieval, pages 141-148. ACM, 2008.
    • (2008) Multimedia Information Retrieval , pp. 141-148
    • Liu, X.1    Ji, R.2    Yao, H.3    Xu, P.4    Sun, X.5    Liu, T.6
  • 22
    • 70349257904 scopus 로고    scopus 로고
    • Sorec: Social recommendation using probabilistic matrix factorization
    • H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: social recommendation using probabilistic matrix factorization. In CKIM, pages 931-940, 2008.
    • (2008) CKIM , pp. 931-940
    • Ma, H.1    Yang, H.2    Lyu, M.R.3    King, I.4
  • 24
    • 0000806922 scopus 로고    scopus 로고
    • Automating the construction of internet portals with machine learning
    • A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore. Automating the construction of internet portals with machine learning. Information Retrieval, 3(2):127-163, 2000.
    • (2000) Information Retrieval , vol.3 , Issue.2 , pp. 127-163
    • McCallum, A.K.1    Nigam, K.2    Rennie, J.3    Seymore, K.4
  • 26
    • 48349135120 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization. In NIPS, pages 1257-1264, 2007.
    • (2007) NIPS , pp. 1257-1264
    • Mnih, A.1    Salakhutdinov, R.2
  • 29
    • 84867125398 scopus 로고    scopus 로고
    • Collaborative topic regression with social matrix factorization for recommendation systems
    • S. Purushotham, Y. Liu, and C.-C. J. Kuo. Collaborative topic regression with social matrix factorization for recommendation systems. In ICML, 2012.
    • (2012) ICML
    • Purushotham, S.1    Liu, Y.2    Kuo, C.-C.J.3
  • 30
    • 84859185089 scopus 로고    scopus 로고
    • Exploring context and content links in social media: A latent space method
    • May
    • G.-J. Qi, C. Aggarwal, Q. Tian, H. Ji, and T. Huang. Exploring context and content links in social media: A latent space method. IEEE Trans. Pattern Anal. Mach. Intell., 34(5):850-862, May 2012.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell , vol.34 , Issue.5 , pp. 850-862
    • Qi, G.-J.1    Aggarwal, C.2    Tian, Q.3    Ji, H.4    Huang, T.5
  • 31
    • 71149095035 scopus 로고    scopus 로고
    • An efficient sparse metric learning in high-dimensional space via l1-penalized logdeterminant regularization
    • G.-J. Qi, J. Tang, Z.-J. Zha, T.-S. Chua, and H.-J. Zhang. An efficient sparse metric learning in high-dimensional space via l1-penalized logdeterminant regularization. In ICML, pages 841-848, 2009.
    • (2009) ICML , pp. 841-848
    • Qi, G.-J.1    Tang, J.2    Zha, Z.-J.3    Chua, T.-S.4    Zhang, H.-J.5
  • 34
    • 34547964973 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for svm
    • S. Shalev-Shwartz, Y. Sing er, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for svm. In ICML, pages 807-814, 2007.
    • (2007) ICML , pp. 807-814
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3
  • 35
    • 72449199441 scopus 로고    scopus 로고
    • Inferring semantic concepts from community-contributed images and noisy tags
    • ACM
    • J. Tang, S. Yan, R. Hong, G.-J. Qi, and T.-S. Chua. Inferring semantic concepts from community-contributed images and noisy tags. In SIGMM, pages 223-232. ACM, 2009.
    • (2009) SIGMM , pp. 223-232
    • Tang, J.1    Yan, S.2    Hong, R.3    Qi, G.-J.4    Chua, T.-S.5
  • 37
    • 80052666619 scopus 로고    scopus 로고
    • Collaborative topic modeling for recommending scientific articles
    • C. Wang and D. M. Blei. Collaborative topic modeling for recommending scientific articles. In SIGKDD, pages 448-456, 2011.
    • (2011) SIGKDD , pp. 448-456
    • Wang, C.1    Blei, D.M.2
  • 38
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • June
    • K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res., 10:207-244, June 2009.
    • (2009) J. Mach. Learn. Res , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 39
    • 84869205493 scopus 로고    scopus 로고
    • Solving a low-rank fac torization model for matrix completion by a nonlinear successive over-relaxation algorithm
    • Z. Wen, W. Yin, and Y. Zhang. Solving a low-rank fac torization model for matrix completion by a nonlinear successive over-relaxation algorithm. Mathematical Programming Computation, 4(4):333-361, 2012.
    • (2012) Mathematical Programming Computation , vol.4 , Issue.4 , pp. 333-361
    • Wen, Z.1    Yin, W.2    Zhang, Y.3
  • 40
    • 84885588967 scopus 로고    scopus 로고
    • Simfusion: Measuring similarity using unified relationship matrix
    • W. Xi, E. A. Fox, W. Fan, B. Zhang, Z. Chen, J. Yan, and D. Zhuang. Simfusion: Measuring similarity using unified relationship matrix. In SIGIR, pages 130-137, 2005.
    • (2005) SIGIR , pp. 130-137
    • Xi, W.1    Fox, E.A.2    Fan, W.3    Zhang, B.4    Chen, Z.5    Yan, J.6    Zhuang, D.7
  • 41
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning, with application to clustering with side-information
    • E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning, with application to clustering with side-information. In NIPS, pages 505-512, 2003.
    • (2003) NIPS , pp. 505-512
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4
  • 42
  • 43
    • 74549181082 scopus 로고    scopus 로고
    • P-rank: A comprehensive structural similarity measure over information networks
    • P. Zhao, J. Han, and Y. Sun. P-rank: A comprehensive structural similarity measure over information networks. In CIKM, pages 553-562, 2009.
    • (2009) CIKM , pp. 553-562
    • Zhao, P.1    Han, J.2    Sun, Y.3
  • 44
    • 85002121785 scopus 로고    scopus 로고
    • Feafiner: Biomarker identification from medical data through feature generalization and selection
    • J. Zhou, Z. Lu, J. Sun, L. Yuan, F. Wang, and J. Ye. Feafiner: biomarker identification from medical data through feature generalization and selection. In SIGKDD, pages 1034-1042, 2013.
    • (2013) SIGKDD , pp. 1034-1042
    • Zhou, J.1    Lu, Z.2    Sun, J.3    Yuan, L.4    Wang, F.5    Ye, J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.