-
1
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.
-
(2009)
SIAM Journal on Imaging Sciences
, vol.2
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
2
-
-
84879398938
-
A lasso for hierarchical interactions
-
J. Bien, J. Taylor, and R. Tibshirani. A lasso for hierarchical interactions. The Annals of Statistics, 41(3):1111-1141, 2013.
-
(2013)
The Annals of Statistics
, vol.41
, Issue.3
, pp. 1111-1141
-
-
Bien, J.1
Taylor, J.2
Tibshirani, R.3
-
4
-
-
0028865483
-
Genetic-environmental interaction in the genesis of aggressivity and conduct disorders
-
R. J. Cadoret, W. R. Yates, G. Woodworth, M. A. Stewart, et al. Genetic-environmental interaction in the genesis of aggressivity and conduct disorders. Archives of General Psychiatry, 52(11):916, 1995.
-
(1995)
Archives of General Psychiatry
, vol.52
, Issue.11
, pp. 916
-
-
Cadoret, R.J.1
Yates, W.R.2
Woodworth, G.3
Stewart, M.A.4
-
5
-
-
33744726904
-
Quantitative robust uncertainty principles and optimally sparse decompositions
-
E. J. Candes and J. Romberg. Quantitative robust uncertainty principles and optimally sparse decompositions. Foundations of Computational Mathematics, 6(2):227-254, 2006.
-
(2006)
Foundations of Computational Mathematics
, vol.6
, Issue.2
, pp. 227-254
-
-
Candes, E.J.1
Romberg, J.2
-
6
-
-
77952558804
-
Variable selection with the strong heredity constraint and its oracle property
-
N. H. Choi, W. Li, and J. Zhu. Variable selection with the strong heredity constraint and its oracle property. Journal of the American Statistical Association, 105(489):354-364, 2010.
-
(2010)
Journal of the American Statistical Association
, vol.105
, Issue.489
, pp. 354-364
-
-
Choi, N.H.1
Li, W.2
Zhu, J.3
-
7
-
-
33646544831
-
A direct formulation for sparse pca using semidefinite programming
-
A. d'Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. Lanckriet. A direct formulation for sparse pca using semidefinite programming. In NIPS, volume 16, pages 41-48, 2004.
-
(2004)
NIPS
, vol.16
, pp. 41-48
-
-
D'Aspremont, A.1
El Ghaoui, L.2
Jordan, M.I.3
Lanckriet, G.R.4
-
8
-
-
80053654021
-
Prediction of mci to ad conversion, via mri, csf biomarkers, and pattern classification
-
C. Davatzikos, P. Bhatt, L. M. Shaw, K. N. Batmanghelich, and J. Q. Trojanowski. Prediction of mci to ad conversion, via mri, csf biomarkers, and pattern classification. Neurobiology of aging, 32(12):2322-e19, 2011.
-
(2011)
Neurobiology of Aging
, vol.32
, Issue.12
-
-
Davatzikos, C.1
Bhatt, P.2
Shaw, L.M.3
Batmanghelich, K.N.4
Trojanowski, J.Q.5
-
9
-
-
33746432148
-
Probing three-way interactions in moderated multiple regression: Development and application of a slope diference test
-
J. F. Dawson and A. W. Richter. Probing three-way interactions in moderated multiple regression: development and application of a slope diference test. Journal of Applied Psychology, 91(4):917, 2006.
-
(2006)
Journal of Applied Psychology
, vol.91
, Issue.4
, pp. 917
-
-
Dawson, J.F.1
Richter, A.W.2
-
10
-
-
34047202247
-
Hippocampal and entorhinal atrophy in mild cognitive impairment prediction of alzheimer disease
-
D. Devanand, G. Pradhaban, X. Liu, A. Khandji, S. De Santi, S. Segal, H. Rusinek, G. Pelton, L. Honig, R. Mayeux, et al. Hippocampal and entorhinal atrophy in mild cognitive impairment prediction of alzheimer disease. Neurology, 68(11):828-836, 2007.
-
(2007)
Neurology
, vol.68
, Issue.11
, pp. 828-836
-
-
Devanand, D.1
Pradhaban, G.2
Liu, X.3
Khandji, A.4
De Santi, S.5
Segal, S.6
Rusinek, H.7
Pelton, G.8
Honig, L.9
Mayeux, R.10
-
11
-
-
6044228097
-
Gene-environment interaction analysis of serotonin system markers with adolescent depression
-
T. C. Eley, K. Sugden, A. Corsico, A. M. Gregory, P. Sham, P. McGuffin, R. Plomin, and I. W. Craig. Gene-environment interaction analysis of serotonin system markers with adolescent depression. Molecular psychiatry, 9(10):908-915, 2004.
-
(2004)
Molecular Psychiatry
, vol.9
, Issue.10
, pp. 908-915
-
-
Eley, T.C.1
Sugden, K.2
Corsico, A.3
Gregory, A.M.4
Sham, P.5
McGuffin, P.6
Plomin, R.7
Craig, I.W.8
-
12
-
-
70349338907
-
Structural mri biomarkers for preclinical and mild alzheimer's disease
-
C. Fennema-Notestine, D. J. Hagler, L. K. McEvoy, A. S. Fleisher, E. H. Wu, D. S. Karow, and A. M. Dale. Structural mri biomarkers for preclinical and mild alzheimer's disease. Human brain mapping, 30(10):3238-3253, 2009.
-
(2009)
Human Brain Mapping
, vol.30
, Issue.10
, pp. 3238-3253
-
-
Fennema-Notestine, C.1
Hagler, D.J.2
McEvoy, L.K.3
Fleisher, A.S.4
Wu, E.H.5
Karow, D.S.6
Dale, A.M.7
-
13
-
-
67649327144
-
Interactions between bdnf val66met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety
-
J. Gatt, C. Nemeroff, C. Dobson-Stone, R. Paul, R. Bryant, P. Schofield, E. Gordon, A. Kemp, and L. Williams. Interactions between bdnf val66met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Molecular psychiatry, 14(7):681-695, 2009.
-
(2009)
Molecular Psychiatry
, vol.14
, Issue.7
, pp. 681-695
-
-
Gatt, J.1
Nemeroff, C.2
Dobson-Stone, C.3
Paul, R.4
Bryant, R.5
Schofield, P.6
Gordon, E.7
Kemp, A.8
Williams, L.9
-
14
-
-
84877724400
-
Multi-stage multi-task feature learning
-
P. Gong, J. Ye, and C. Zhang. Multi-stage multi-task feature learning. In NIPS, pages 1997-2005, 2012.
-
(2012)
NIPS
, pp. 1997-2005
-
-
Gong, P.1
Ye, J.2
Zhang, C.3
-
15
-
-
84897545592
-
A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems
-
P. Gong, C. Zhang, Z. Lu, J. Huang, and J. Ye. A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems. In ICML, 2013.
-
(2013)
ICML
-
-
Gong, P.1
Zhang, C.2
Lu, Z.3
Huang, J.4
Ye, J.5
-
16
-
-
84887455696
-
-
Tsinghua University
-
P. Gong, C. Zhang, Z. Lu, J. Huang, and J. Ye. GIST: General Iterative Shrinkage and Thresholding for Non-convex Sparse Learning. Tsinghua University, 2013.
-
(2013)
GIST: General Iterative Shrinkage and Thresholding for Non-convex Sparse Learning
-
-
Gong, P.1
Zhang, C.2
Lu, Z.3
Huang, J.4
Ye, J.5
-
17
-
-
0003684449
-
-
Springer
-
T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, J. Friedman, and R. Tibshirani. The elements of statistical learning, volume 2. Springer, 2009.
-
(2009)
The Elements of Statistical Learning
, vol.2
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
Hastie, T.4
Friedman, J.5
Tibshirani, R.6
-
18
-
-
34547688865
-
An interior-point method for large-scale 1-regularized logistic regression
-
K. Koh, S.-J. Kim, and S. Boyd. An interior-point method for large-scale 1-regularized logistic regression. Journal of Machine learning research, 8(7), 2007.
-
(2007)
Journal of Machine Learning Research
, vol.8
, Issue.7
-
-
Koh, K.1
Kim, S.-J.2
Boyd, S.3
-
19
-
-
84897372610
-
Hierarchical interactions model for predicting mild cognitive impairment (mci) to alzheimer's disease (ad) conversion
-
A. D. N. Initiative
-
H. Li, Y. Liu, P. Gong, C. Zhang, J. Ye, A. D. N. Initiative, et al. Hierarchical interactions model for predicting mild cognitive impairment (mci) to alzheimer's disease (ad) conversion. PloS one, 9(1):e82450, 2014.
-
(2014)
PloS One
, vol.9
, Issue.1
-
-
Li, H.1
Liu, Y.2
Gong, P.3
Zhang, C.4
Ye, J.5
-
20
-
-
84905882514
-
Sparse generalized functional linear model for predicting remission status of depression patients
-
World Scientific
-
Y. Liu, Z. Nie, J. Zhou, M. Farnum, V. A. Narayan, G. Wittenberg, and J. Ye. Sparse generalized functional linear model for predicting remission status of depression patients. In Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, volume 19, pages 364-375. World Scientific, 2013.
-
(2013)
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
, vol.19
, pp. 364-375
-
-
Liu, Y.1
Nie, Z.2
Zhou, J.3
Farnum, M.4
Narayan, V.A.5
Wittenberg, G.6
Ye, J.7
-
21
-
-
79952188549
-
Derivation of a new adas-cog composite using tree-based multivariate analysis: Prediction of conversion from mild cognitive impairment to alzheimer disease
-
D. A. Llano, G. Laforet, and V. Devanarayan. Derivation of a new adas-cog composite using tree-based multivariate analysis: prediction of conversion from mild cognitive impairment to alzheimer disease. Alzheimer Disease & Associated Disorders, 25(1):73-84, 2011.
-
(2011)
Alzheimer Disease & Associated Disorders
, vol.25
, Issue.1
, pp. 73-84
-
-
Llano, D.A.1
Laforet, G.2
Devanarayan, V.3
-
24
-
-
0042067944
-
Mild cognitive impairment clinical trials
-
R. C. Petersen. Mild cognitive impairment clinical trials. Nature Reviews Drug Discovery, 2(8):646-653, 2003.
-
(2003)
Nature Reviews Drug Discovery
, vol.2
, Issue.8
, pp. 646-653
-
-
Petersen, R.C.1
-
25
-
-
78651289934
-
Variable selection using adaptive nonlinear interaction structures in high dimensions
-
P. Radchenko and G. M. James. Variable selection using adaptive nonlinear interaction structures in high dimensions. Journal of the American Statistical Association, 105(492):1541-1553, 2010.
-
(2010)
Journal of the American Statistical Association
, vol.105
, Issue.492
, pp. 1541-1553
-
-
Radchenko, P.1
James, G.M.2
-
26
-
-
84985204924
-
Organizational commitment, turnover and absenteeism: An examination of direct and interaction effects
-
M. J. Somers. Organizational commitment, turnover and absenteeism: An examination of direct and interaction effects. Journal of Organizational Behavior, 16(1):49-58, 1995.
-
(1995)
Journal of Organizational Behavior
, vol.16
, Issue.1
, pp. 49-58
-
-
Somers, M.J.1
-
28
-
-
84862598129
-
Sparse learning and stability selection for predicting mci to ad conversion using baseline adni data
-
J. Ye, M. Farnum, E. Yang, R. Verbeeck, V. Lobanov, N. Raghavan, G. Novak, A. DiBernardo, V. A. Narayan, et al. Sparse learning and stability selection for predicting mci to ad conversion using baseline adni data. BMC neurology, 12(1):46, 2012.
-
(2012)
BMC Neurology
, vol.12
, Issue.1
, pp. 46
-
-
Ye, J.1
Farnum, M.2
Yang, E.3
Verbeeck, R.4
Lobanov, V.5
Raghavan, N.6
Novak, G.7
DiBernardo, A.8
Narayan, V.A.9
-
30
-
-
69949155103
-
The composite absolute penalties family for grouped and hierarchical variable selection
-
12
-
P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and hierarchical variable selection. The Annals of Statistics, 37(6A):3468-3497, 12 2009.
-
(2009)
The Annals of Statistics
, vol.37
, Issue.6 A
, pp. 3468-3497
-
-
Zhao, P.1
Rocha, G.2
Yu, B.3
-
31
-
-
84877334125
-
Modeling disease progression via multi-task learning
-
J. Zhou, J. Liu, V. A. Narayan, and J. Ye. Modeling disease progression via multi-task learning. NeuroImage, 78:233-248, 2013.
-
(2013)
NeuroImage
, vol.78
, pp. 233-248
-
-
Zhou, J.1
Liu, J.2
Narayan, V.A.3
Ye, J.4
-
32
-
-
33745309913
-
Sparse principal component analysis
-
H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of computational and graphical statistics, 15(2):265-286, 2006.
-
(2006)
Journal of Computational and Graphical Statistics
, vol.15
, Issue.2
, pp. 265-286
-
-
Zou, H.1
Hastie, T.2
Tibshirani, R.3
|