-
1
-
-
84872015802
-
Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions
-
A. Agarwal, S. Negahban, and M. J. Wainwright. Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions. The Annals of Statistics, 40(2):1171-1197, 2012.
-
(2012)
The Annals of Statistics
, vol.40
, Issue.2
, pp. 1171-1197
-
-
Agarwal, A.1
Negahban, S.2
Wainwright, M.J.3
-
4
-
-
80054829659
-
-
prepint Technical report, arXiv:1012.0621v2
-
V. Chandrasekaran, B. Recht, P. Parrilo, and A.Willsky. The convex geometry of linear inverse problems, prepint. Technical report, arXiv:1012.0621v2, 2010.
-
(2010)
The Convex Geometry of Linear Inverse Problems
-
-
Chandrasekaran, V.1
Recht, B.2
Parrilo, P.3
Willsky, A.4
-
5
-
-
0034144758
-
A multilinear singular value decomposition
-
L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl., 21(4):1253-1278, 2000.
-
(2000)
SIAM J. Matrix Anal. Appl
, vol.21
, Issue.4
, pp. 1253-1278
-
-
De Lathauwer, L.1
De Moor, B.2
Vandewalle, J.3
-
6
-
-
0034144761
-
On the best rank-1 and rank-(R1;R2; : : : RN) approximation of higher-order tensors
-
L. De Lathauwer, B. De Moor, and J. Vandewalle. On the best rank-1 and rank-(R1;R2; : : : ;RN) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl., 21(4):1324-1342, 2000.
-
(2000)
SIAM J. Matrix Anal. Appl
, vol.21
, Issue.4
, pp. 1324-1342
-
-
De Lathauwer, L.1
De Moor, B.2
Vandewalle, J.3
-
9
-
-
79551661156
-
Tensor completion and low-n-rank tensor recovery via convex optimization
-
S. Gandy, B. Recht, and I. Yamada. Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Problems, 27:025010, 2011.
-
(2011)
Inverse Problems
, vol.27
, pp. 025010
-
-
Gandy, S.1
Recht, B.2
Yamada, I.3
-
10
-
-
85162707890
-
The expression of a tensor or a polyadic as a sum of products
-
F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys., 6(1): 164-189, 1927.
-
(1927)
J. Math. Phys
, vol.6
, Issue.1
, pp. 164-189
-
-
Hitchcock, F.L.1
-
11
-
-
81255189015
-
Robust matrix decomposition with sparse corruptions
-
D. Hsu, S. M. Kakade, and T. Zhang. Robust matrix decomposition with sparse corruptions. Information Theory, IEEE Transactions on, 57(11):7221-7234, 2011.
-
(2011)
Information Theory IEEE Transactions on
, vol.57
, Issue.11
, pp. 7221-7234
-
-
Hsu, D.1
Kakade, S.M.2
Zhang, T.3
-
12
-
-
85162062975
-
A dirty model for multi-task learning
-
A. Jalali, P. Ravikumar, S. Sanghavi, and C. Ruan. A dirty model for multi-task learning. In Advances in NIPS 23, pages 964-972. 2010.
-
(2010)
Advances in NIPS
, vol.23
, pp. 964-972
-
-
Jalali, A.1
Ravikumar, P.2
Sanghavi, S.3
Ruan, C.4
-
13
-
-
80555129673
-
Structured variable selection with sparsity-inducing norms
-
R. Jenatton, J. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. J. Mach. Learn. Res., 12:2777-2824, 2011.
-
(2011)
J. Mach. Learn. Res
, vol.12
, pp. 2777-2824
-
-
Jenatton, R.1
Audibert, J.2
Bach, F.3
-
14
-
-
68649096448
-
Tensor decompositions and applications
-
T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review, 51(3):455-500, 2009.
-
(2009)
SIAM Review
, vol.51
, Issue.3
, pp. 455-500
-
-
Kolda, T.G.1
Bader, B.W.2
-
15
-
-
85100063855
-
Tensor completion for estimating missing values in visual data
-
J. Liu, P. Musialski, P. Wonka, and J. Ye. Tensor completion for estimating missing values in visual data. In Prof. ICCV, 2009.
-
(2009)
Prof. ICCV
-
-
Liu, J.1
Musialski, P.2
Wonka, P.3
Ye, J.4
-
16
-
-
80555129671
-
Convex and network flow optimization for structured sparsity
-
J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Convex and network flow optimization for structured sparsity. J. Mach. Learn. Res., 12:2681-2720, 2011.
-
(2011)
J. Mach. Learn. Res
, vol.12
, pp. 2681-2720
-
-
Mairal, J.1
Jenatton, R.2
Obozinski, G.3
Bach, F.4
-
18
-
-
79960865296
-
Applications of tensor (multiway array) factorizations and decompositions in data mining
-
M. Mørup. Applications of tensor (multiway array) factorizations and decompositions in data mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1):24-40, 2011.
-
(2011)
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
, vol.1
, Issue.1
, pp. 24-40
-
-
Mørup, M.1
-
20
-
-
84858717588
-
A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers
-
S. Negahban, P. Ravikumar, M. Wainwright, and B. Yu. A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers. In Advances in NIPS 22, pages 1348-1356. 2009.
-
(2009)
Advances in NIPS
, vol.22
, pp. 1348-1356
-
-
Negahban, S.1
Ravikumar, P.2
Wainwright, M.3
Yu, B.4
-
22
-
-
78549288866
-
Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
-
B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471-501, 2010.
-
(2010)
SIAM Review
, vol.52
, Issue.3
, pp. 471-501
-
-
Recht, B.1
Fazel, M.2
Parrilo, P.3
-
26
-
-
85162510548
-
Statistical performance of convex tensor decomposition
-
R. Tomioka, T. Suzuki, K. Hayashi, and H. Kashima. Statistical performance of convex tensor decomposition. In Advances in NIPS 24, pages 972-980. 2011.
-
(2011)
Advances in NIPS
, vol.24
, pp. 972-980
-
-
Tomioka, R.1
Suzuki, T.2
Hayashi, K.3
Kashima, H.4
-
27
-
-
0013953617
-
Some mathematical notes on three-mode factor analysis
-
L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):279-311, 1966.
-
(1966)
Psychometrika
, vol.31
, Issue.3
, pp. 279-311
-
-
Tucker, L.R.1
|