메뉴 건너뛰기




Volumn 2, Issue , 2012, Pages 827-835

Proximal Newton-type methods for convex optimization

Author keywords

[No Author keywords available]

Indexed keywords

CONTINUOUSLY DIFFERENTIABLE; CONVEX OPTIMIZATION PROBLEMS; DIFFERENTIABLE FUNCTIONS; GLOBALLY CONVERGENT; NEWTON-TYPE METHODS; OBJECTIVE FUNCTIONS; OPTIMAL SOLUTIONS; RATES OF CONVERGENCE;

EID: 84877762791     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (66)

References (27)
  • 1
    • 33747151859 scopus 로고    scopus 로고
    • Interior gradient and proximal methods for convex and conic optimization
    • A. Auslender and M. Teboulle, Interior gradient and proximal methods for convex and conic optimization, SIAM J. Optim., 16 (2006), pp. 697-725.
    • (2006) SIAM J. Optim. , vol.16 , pp. 697-725
    • Auslender, A.1    Teboulle, M.2
  • 2
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), pp. 183-202.
    • (2009) SIAM J. Imaging Sci. , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 3
    • 84856004485 scopus 로고    scopus 로고
    • Templates for convex cone problems with applications to sparse signal recovery
    • S. R. Becker, M. J. Candés, and M. C. Grant, Templates for convex cone problems with applications to sparse signal recovery, Math. Program. Comput., 3 (2011), pp. 1-54.
    • (2011) Math. Program. Comput. , vol.3 , pp. 1-54
    • Becker, S.R.1    Candés, M.J.2    Grant, M.C.3
  • 4
    • 84877780049 scopus 로고    scopus 로고
    • A quasi-Newton proximal splitting method
    • Lake Tahoe, California
    • S. Becker and J. Fadili, A quasi-Newton proximal splitting method, NIPS, Lake Tahoe, California, 2012.
    • (2012) NIPS
    • Becker, S.1    Fadili, J.2
  • 6
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • E. J. Candés and B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math, 9 (2009), pp. 717-772.
    • (2009) Found. Comput. Math , vol.9 , pp. 717-772
    • Candés, E.J.1    Recht, B.2
  • 7
    • 84966259557 scopus 로고
    • A characterization of superlinear convergence and its application to quasi-Newton methods
    • J. E. Dennis, Jr. and J. J. Moré, A characterization of superlinear convergence and its application to quasi-Newton methods, Math. Comp., 28, (1974), pp. 549-560.
    • (1974) Math. Comp. , vol.28 , pp. 549-560
    • Dennis Jr., J.E.1    Moré, J.J.2
  • 8
    • 0003176174 scopus 로고    scopus 로고
    • Choosing the forcing terms in an inexact Newton method
    • S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput., 17 (1996), pp. 16-32.
    • (1996) SIAM J. Sci. Comput. , vol.17 , pp. 16-32
    • Eisenstat, S.C.1    Walker, H.F.2
  • 10
    • 0019602085 scopus 로고
    • A generalized proximal point algorithm for certain non-convex minimization problems
    • M. Fukushima and H. Mine, A generalized proximal point algorithm for certain non-convex minimization problems, Internat. J. Systems Sci., 12 (1981), pp. 989-1000.
    • (1981) Internat. J. Systems Sci. , vol.12 , pp. 989-1000
    • Fukushima, M.1    Mine, H.2
  • 11
    • 85162490550 scopus 로고    scopus 로고
    • Sparse inverse covariance matrix estimation using quadratic approximation
    • Granada, Spain
    • C. J. Hsieh, M. A. Sustik, P. Ravikumar, and I. S. Dhillon, Sparse inverse covariance matrix estimation using quadratic approximation, NIPS, Granada, Spain, 2011.
    • (2011) NIPS
    • Hsieh, C.J.1    Sustik, M.A.2    Ravikumar, P.3    Dhillon, I.S.4
  • 12
    • 77956500998 scopus 로고    scopus 로고
    • A scalable trust-region algorithm with applications to mixed-norm regression
    • Haifa, Israel
    • D. Kim, S. Sra, and I. S. Dhillon, A scalable trust-region algorithm with applications to mixed-norm regression, ICML, Haifa, Israel, 2010.
    • (2010) ICML
    • Kim, D.1    Sra, S.2    Dhillon, I.S.3
  • 13
    • 57649169327 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite objective function
    • Y. Nesterov, Gradient methods for minimizing composite objective function, CORE discussion paper, 2007.
    • (2007) CORE Discussion Paper
    • Nesterov, Y.1
  • 14
    • 77953322499 scopus 로고    scopus 로고
    • Joint covariate selection and joint subspace selection for multiple classification problems
    • G. Obozinski, B. Taskar, and M. I. Jordan, Joint covariate selection and joint subspace selection for multiple classification problems, Stat. Comput. (2010), pp. 231-252
    • (2010) Stat. Comput. , pp. 231-252
    • Obozinski, G.1    Taskar, B.2    Jordan, M.I.3
  • 15
    • 84877779852 scopus 로고    scopus 로고
    • Newton-like methods for sparse inverse covariance estimation
    • Lake Tahoe, California
    • P. Olsen, F. Oztoprak, J. Nocedal, S. Rennie, Newton-like methods for sparse inverse covariance estimation, NIPS, Lake Tahoe, California, 2012.
    • (2012) NIPS
    • Olsen, P.1    Oztoprak, F.2    Nocedal, J.3    Rennie, S.4
  • 17
    • 77951455815 scopus 로고    scopus 로고
    • High-dimensional Ising model selection using'1-regularized logistic regression
    • P. Ravikumar, M. J. Wainwright and J. D. Lafferty, High-dimensional Ising model selection using'1-regularized logistic regression, Ann. Statist. (2010), pp. 1287-1319.
    • (2010) Ann. Statist. , pp. 1287-1319
    • Ravikumar, P.1    Wainwright, M.J.2    Lafferty, J.D.3
  • 19
    • 77955995598 scopus 로고    scopus 로고
    • Optimizing costly functions with simple constraints: A limited-memory projected quasi-Newton algorithm
    • Clearwater Beach, Florida
    • M. Schmidt, E. van den Berg, M. P. Friedlander, and K. Murphy, Optimizing costly functions with simple constraints: a limited-memory projected quasi-Newton algorithm, AISTATS, Clearwater Beach, Florida, 2009.
    • (2009) AISTATS
    • Schmidt, M.1    Berg Den E.Van2    Friedlander, M.P.3    Murphy, K.4
  • 20
    • 84857722294 scopus 로고    scopus 로고
    • Projected Newton-type methods in machine learning
    • S. Sra, S. Nowozin, and S. Wright, editors, MIT Press
    • M. Schmidt, D. Kim, and S. Sra, Projected Newton-type methods in machine learning, in S. Sra, S. Nowozin, and S. Wright, editors, Optimization for Machine Learning, MIT Press (2011).
    • (2011) Optimization for Machine Learning
    • Schmidt, M.1    Kim, D.2    Sra, S.3
  • 21
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • P. Tseng and S. Yun, A coordinate gradient descent method for nonsmooth separable minimization, Math. Prog. Ser. B, 117 (2009), pp. 387-423.
    • (2009) Math. Prog. Ser. B , vol.117 , pp. 387-423
    • Tseng, P.1    Yun, S.2
  • 22
    • 70049111607 scopus 로고    scopus 로고
    • On accelerated proximal gradient methods for convex-concave optimization
    • submitted to
    • P. Tseng, On accelerated proximal gradient methods for convex-concave optimization, submitted to SIAM J. Optim. (2008).
    • (2008) SIAM J. Optim.
    • Tseng, P.1
  • 23
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 58 (1996), pp. 267-288.
    • (1996) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 25
    • 56449097975 scopus 로고    scopus 로고
    • A quasi-newton approach to nonsmooth convex optimization
    • Helsinki, Finland
    • J. Yu, S. V. N. Vishwanathan, S. Günter, and N. N. Schraudolph, A Quasi-Newton Approach to Nonsmooth Convex Optimization, ICML, Helsinki, Finland, 2008.
    • (2008) ICML
    • Yu, J.1    Vishwanathan, S.V.N.2    Günter, S.3    Schraudolph, N.N.4
  • 26
    • 84877775375 scopus 로고    scopus 로고
    • An improved GLMNET for'1-regularized logistic regression and support vector machines
    • G. X. Yuan, C. H. Ho and C. J. Lin, An improved GLMNET for'1-regularized logistic regression and support vector machines, National Taiwan University, Tech. Report 2011.
    • (2011) National Taiwan University, Tech Report
    • Yuan, G.X.1    Ho, C.H.2    Lin, C.J.3
  • 27
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • R. H. Zou and T. Hastie, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B Stat. Methodol., 67 (2005), pp. 301-320.
    • (2005) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.67 , pp. 301-320
    • Zou, R.H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.