-
1
-
-
77956501842
-
Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy
-
1 Noor, E., Eden, E., Milo, R., Alon, U., Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Mol Cell 39 (2010), 809–820.
-
(2010)
Mol Cell
, vol.39
, pp. 809-820
-
-
Noor, E.1
Eden, E.2
Milo, R.3
Alon, U.4
-
2
-
-
0002163903
-
Structural properties of metabolic networks: implications for evolution and modelling of metabolism
-
J.-H.S. Hofmeyr J.M. Rohwer J.L. Snoep Stellenbosch University Press Stellenbosch
-
2 Fell, D.A., Wagner, A., Structural properties of metabolic networks: implications for evolution and modelling of metabolism. Hofmeyr, J.-H.S., Rohwer, J.M., Snoep, J.L., (eds.) Animating the cellular map, 2000, Stellenbosch University Press, Stellenbosch, 79–85.
-
(2000)
Animating the cellular map
, pp. 79-85
-
-
Fell, D.A.1
Wagner, A.2
-
3
-
-
13244288422
-
Top Value Added Chemicals from Biomass-Vol 1: Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Pacific Northwest National Laboratory
-
National Renewable Energy Laboratory and Department of Energy
-
3 Werpy, T., Petersen, G., Aden, A., Bozell, J., Holladay, J., White, J., Manheim, A., Eliot, D., Lasure, L., Jones, S., Top Value Added Chemicals from Biomass-Vol 1: Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Pacific Northwest National Laboratory. 2004, National Renewable Energy Laboratory and Department of Energy.
-
(2004)
-
-
Werpy, T.1
Petersen, G.2
Aden, A.3
Bozell, J.4
Holladay, J.5
White, J.6
Manheim, A.7
Eliot, D.8
Lasure, L.9
Jones, S.10
-
4
-
-
84923809316
-
Biorefineries for the production of top building block chemicals and their derivatives
-
Review of DOE report and 2010 update of additional value added chemicals with particular consideration of molecules in industrial development or production.
-
4•• Choi, S., Song, C.W., Shin, J.H., Lee, S.Y., Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28 (2015), 223–239 Review of DOE report and 2010 update of additional value added chemicals with particular consideration of molecules in industrial development or production.
-
(2015)
Metab Eng
, vol.28
, pp. 223-239
-
-
Choi, S.1
Song, C.W.2
Shin, J.H.3
Lee, S.Y.4
-
5
-
-
84938765758
-
Synthetic biology for specialty chemicals
-
Review of metabolic engineering and synthetic biology tools and efforts to produce fuels, commodity and specialty chemicals.
-
5• Markham, K.A., Alper, H.S., Synthetic biology for specialty chemicals. Annu Rev Chem Biomol Eng 6 (2015), 35–52 Review of metabolic engineering and synthetic biology tools and efforts to produce fuels, commodity and specialty chemicals.
-
(2015)
Annu Rev Chem Biomol Eng
, vol.6
, pp. 35-52
-
-
Markham, K.A.1
Alper, H.S.2
-
6
-
-
84979157963
-
3D Printing with Biomaterials: Towards a Sustainable and Circular Economy
-
IOS Press
-
6 Ad van Wijk, IvW., 3D Printing with Biomaterials: Towards a Sustainable and Circular Economy. 2015, IOS Press.
-
(2015)
-
-
Ad van Wijk, I.1
-
7
-
-
84963516758
-
One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli
-
7 Choi, S.Y., Park, S.J., Kim, W.J., Yang, J.E., Lee, H., Shin, H., Lee, S.Y., One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nat Biotechnol 34 (2016), 435–440.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 435-440
-
-
Choi, S.Y.1
Park, S.J.2
Kim, W.J.3
Yang, J.E.4
Lee, H.5
Shin, H.6
Lee, S.Y.7
-
8
-
-
84924040473
-
Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid
-
8 Lee, J.Y., Kang, C.D., Lee, S.H., Park, Y.K., Cho, K.M., Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid. Biotechnol Bioeng 112 (2015), 751–758.
-
(2015)
Biotechnol Bioeng
, vol.112
, pp. 751-758
-
-
Lee, J.Y.1
Kang, C.D.2
Lee, S.H.3
Park, Y.K.4
Cho, K.M.5
-
9
-
-
84869874625
-
Highly accumulative production of l(+)-lactate from glucose by crystallization fermentation with immobilized Rhizopus oryzae
-
9 Yamane, T., Tanaka, R., Highly accumulative production of l(+)-lactate from glucose by crystallization fermentation with immobilized Rhizopus oryzae. J Biosci Bioeng 115 (2013), 90–95.
-
(2013)
J Biosci Bioeng
, vol.115
, pp. 90-95
-
-
Yamane, T.1
Tanaka, R.2
-
10
-
-
77957329119
-
Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli
-
10 Ajikumar, P.K., Xiao, W.-H., Tyo, K.E.J., Wang, Y., Simeon, F., Leonard, E., Mucha, O., Phon, T.H., Pfeifer, B., Stephanopoulos, G., Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330 (2010), 70–74.
-
(2010)
Science
, vol.330
, pp. 70-74
-
-
Ajikumar, P.K.1
Xiao, W.-H.2
Tyo, K.E.J.3
Wang, Y.4
Simeon, F.5
Leonard, E.6
Mucha, O.7
Phon, T.H.8
Pfeifer, B.9
Stephanopoulos, G.10
-
11
-
-
38049001166
-
Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
-
11 Atsumi, S., Hanai, T., Liao, J.C., Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 2008, 451.
-
(2008)
Nature
, pp. 451
-
-
Atsumi, S.1
Hanai, T.2
Liao, J.C.3
-
12
-
-
84933073492
-
Two-dimensional isobutyl acetate production pathways to improve carbon yield
-
12 Tashiro, Y., Desai, S.H., Atsumi, S., Two-dimensional isobutyl acetate production pathways to improve carbon yield. Nat Commun, 2015, 6.
-
(2015)
Nat Commun
, pp. 6
-
-
Tashiro, Y.1
Desai, S.H.2
Atsumi, S.3
-
13
-
-
84897025067
-
Expanding ester biosynthesis in Escherichia coli
-
13 Rodriguez, G.M., Tashiro, Y., Atsumi, S., Expanding ester biosynthesis in Escherichia coli. Nat Chem Biol 10 (2014), 259–265.
-
(2014)
Nat Chem Biol
, vol.10
, pp. 259-265
-
-
Rodriguez, G.M.1
Tashiro, Y.2
Atsumi, S.3
-
14
-
-
84925235492
-
Enhancing fatty acid ethyl ester production in Saccharomyces cerevisiae through metabolic engineering and medium optimization
-
14 Thompson, R.A., Trinh, C.T., Enhancing fatty acid ethyl ester production in Saccharomyces cerevisiae through metabolic engineering and medium optimization. Biotechnol Bioeng 111 (2014), 2200–2208.
-
(2014)
Biotechnol Bioeng
, vol.111
, pp. 2200-2208
-
-
Thompson, R.A.1
Trinh, C.T.2
-
15
-
-
84893503533
-
Metabolic engineering of Escherichia coli for production of fatty acid short-chain esters through combination of the fatty acid and 2-keto acid pathways
-
15 Guo, D., Zhu, J., Deng, Z., Liu, T., Metabolic engineering of Escherichia coli for production of fatty acid short-chain esters through combination of the fatty acid and 2-keto acid pathways. Metab Eng 22 (2014), 69–75.
-
(2014)
Metab Eng
, vol.22
, pp. 69-75
-
-
Guo, D.1
Zhu, J.2
Deng, Z.3
Liu, T.4
-
16
-
-
77955664336
-
Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase
-
16 Liu, X.-Y., Chi, Z., Liu, G.-L., Wang, F., Madzak, C., Chi, Z.-M., Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase. Metab Eng 12 (2010), 469–476.
-
(2010)
Metab Eng
, vol.12
, pp. 469-476
-
-
Liu, X.-Y.1
Chi, Z.2
Liu, G.-L.3
Wang, F.4
Madzak, C.5
Chi, Z.-M.6
-
17
-
-
84952663246
-
Biobased organic acids production by metabolically engineered microorganisms
-
Extensive review of citric acid and lactic acid as commercially viable biobased chemicals produced at industrially relevant levels (>100 g/L).
-
17•• Chen, Y., Nielsen, J., Biobased organic acids production by metabolically engineered microorganisms. Curr Opin Biotechnol 37 (2016), 165–172 Extensive review of citric acid and lactic acid as commercially viable biobased chemicals produced at industrially relevant levels (>100 g/L).
-
(2016)
Curr Opin Biotechnol
, vol.37
, pp. 165-172
-
-
Chen, Y.1
Nielsen, J.2
-
18
-
-
84942598369
-
Metabolic engineering of Yarrowia lipolytica for itaconic acid production
-
18 Blazeck, J., Hill, A., Jamoussi, M., Pan, A., Miller, J., Alper, H., Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metab Eng 32 (2015), 66–73.
-
(2015)
Metab Eng
, vol.32
, pp. 66-73
-
-
Blazeck, J.1
Hill, A.2
Jamoussi, M.3
Pan, A.4
Miller, J.5
Alper, H.6
-
19
-
-
84903782489
-
Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in Escherichia coli
-
Metabolic engineering effort focused on modular units to produce precursors (tyrosine, malyonyl-CoA) in addition to production pathway.
-
19• Wu, J., Zhou, T., Du, G., Zhou, J., Chen, J., Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in Escherichia coli. Public Libr Sci ONE, 9, 2014, e101492 Metabolic engineering effort focused on modular units to produce precursors (tyrosine, malyonyl-CoA) in addition to production pathway.
-
(2014)
Public Libr Sci ONE
, vol.9
, pp. e101492
-
-
Wu, J.1
Zhou, T.2
Du, G.3
Zhou, J.4
Chen, J.5
-
20
-
-
79958715193
-
Optimization of a heterologous pathway for the production of flavonoids from glucose
-
20 Santos, C.N.S., Koffas, M., Stephanopoulos, G., Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng 13 (2011), 392–400.
-
(2011)
Metab Eng
, vol.13
, pp. 392-400
-
-
Santos, C.N.S.1
Koffas, M.2
Stephanopoulos, G.3
-
21
-
-
84986254065
-
Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis
-
21 Rodriguez, A., Kildegaard, K.R., Li, M., Borodina, I., Nielsen, J., Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng 31 (2015), 181–188.
-
(2015)
Metab Eng
, vol.31
, pp. 181-188
-
-
Rodriguez, A.1
Kildegaard, K.R.2
Li, M.3
Borodina, I.4
Nielsen, J.5
-
22
-
-
84958250665
-
Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids
-
22 Jones, J.A., Vernacchio, V.R., Sinkoe, A.L., Collins, S.M., Ibrahim, M.H.A., Lachance, D.M., Hahn, J., Koffas, M., Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab Eng 35 (2016), 55–63.
-
(2016)
Metab Eng
, vol.35
, pp. 55-63
-
-
Jones, J.A.1
Vernacchio, V.R.2
Sinkoe, A.L.3
Collins, S.M.4
Ibrahim, M.H.A.5
Lachance, D.M.6
Hahn, J.7
Koffas, M.8
-
23
-
-
84905113885
-
Production of kaempferol 3-O-rhamnoside from glucose using engineered Escherichia coli
-
23 Yang, S.-M., Han, S.H., Kim, B.-G., Ahn, J.-H., Production of kaempferol 3-O-rhamnoside from glucose using engineered Escherichia coli. J Ind Microbiol Biotechnol 41 (2014), 1311–1318.
-
(2014)
J Ind Microbiol Biotechnol
, vol.41
, pp. 1311-1318
-
-
Yang, S.-M.1
Han, S.H.2
Kim, B.-G.3
Ahn, J.-H.4
-
24
-
-
1642457254
-
Metabolic engineering for microbial production of shikimic acid
-
24 Krämer, M., Bongaerts, J., Bovenberg, R., Kremer, S., Muller, U., Orf, S., Wubbolts, M., Raeven, L., Metabolic engineering for microbial production of shikimic acid. Metab Eng 5 (2003), 277–283.
-
(2003)
Metab Eng
, vol.5
, pp. 277-283
-
-
Krämer, M.1
Bongaerts, J.2
Bovenberg, R.3
Kremer, S.4
Muller, U.5
Orf, S.6
Wubbolts, M.7
Raeven, L.8
-
25
-
-
84941346066
-
Complete biosynthesis of opioids in yeast
-
Metabolic engineering of S. cerevisiae to produce thebaine and hydrocodone from tyrosine via introduction of 23 genes under 6 different modules. Excellent proof of concept paper for generating complex plant bioproducts using microbes.
-
25•• Galanie, S., Thodey, K., Trenchard, I.J., Interrante, M.F., Smolke, C.D., Complete biosynthesis of opioids in yeast. Science 349 (2015), 1095–1100 Metabolic engineering of S. cerevisiae to produce thebaine and hydrocodone from tyrosine via introduction of 23 genes under 6 different modules. Excellent proof of concept paper for generating complex plant bioproducts using microbes.
-
(2015)
Science
, vol.349
, pp. 1095-1100
-
-
Galanie, S.1
Thodey, K.2
Trenchard, I.J.3
Interrante, M.F.4
Smolke, C.D.5
-
26
-
-
54349114978
-
Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways
-
26 Shen, C.R., Liao, J.C., Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10 (2008), 312–320.
-
(2008)
Metab Eng
, vol.10
, pp. 312-320
-
-
Shen, C.R.1
Liao, J.C.2
-
27
-
-
84930936873
-
Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid
-
Recent efforts using aspartate as precurosor in a fumarate-overproducing strain of E. coli in conjunction with synthetic promoters to produce of 3-aminopropionic acid.
-
27• Song, C.W., Lee, J., Ko, Y.-S., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metab Eng 30 (2015), 121–129 Recent efforts using aspartate as precurosor in a fumarate-overproducing strain of E. coli in conjunction with synthetic promoters to produce of 3-aminopropionic acid.
-
(2015)
Metab Eng
, vol.30
, pp. 121-129
-
-
Song, C.W.1
Lee, J.2
Ko, Y.-S.3
Lee, S.Y.4
-
28
-
-
84920194778
-
Microbial acetyl-CoA metabolism and metabolic engineering
-
Extensive review of acetyl-CoA metabolism in S. cerevisiae and E. coli with a focus on enzymes characterization.
-
28•• Krivoruchko, A., Zhang, Y., Siewers, V., Chen, Y., Nielsen, J., Microbial acetyl-CoA metabolism and metabolic engineering. Metab Eng 28 (2015), 28–42 Extensive review of acetyl-CoA metabolism in S. cerevisiae and E. coli with a focus on enzymes characterization.
-
(2015)
Metab Eng
, vol.28
, pp. 28-42
-
-
Krivoruchko, A.1
Zhang, Y.2
Siewers, V.3
Chen, Y.4
Nielsen, J.5
-
29
-
-
84877804801
-
Modular optimization of multi-gene pathways for fatty acids production in E. coli
-
29 Xu, P., Gu, Q., Wang, W., Wong, L., Bower, A., Collins, C., Koffas, M., Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun, 4, 2013, 1409.
-
(2013)
Nat Commun
, vol.4
, pp. 1409
-
-
Xu, P.1
Gu, Q.2
Wang, W.3
Wong, L.4
Bower, A.5
Collins, C.6
Koffas, M.7
-
30
-
-
84924176808
-
An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica
-
30 Liu, L., Pan, A., Spofford, C., Zhou, N., Alper, H., An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica. Metab Eng 29 (2015), 36–45.
-
(2015)
Metab Eng
, vol.29
, pp. 36-45
-
-
Liu, L.1
Pan, A.2
Spofford, C.3
Zhou, N.4
Alper, H.5
-
31
-
-
85007559982
-
Engineering of a high lipid producing Yarrowia lipolytica strain
-
31 Friedlander, J., Tsakraklides, V., Kamineni, A., Greenhagen, E., Consiglio, A., MacEwen, K., Crabtree, D., Afshar, J., Nugent, R., Hamilton, M., et al. Engineering of a high lipid producing Yarrowia lipolytica strain. Biotechnol Biofuels 9 (2016), 1–12.
-
(2016)
Biotechnol Biofuels
, vol.9
, pp. 1-12
-
-
Friedlander, J.1
Tsakraklides, V.2
Kamineni, A.3
Greenhagen, E.4
Consiglio, A.5
MacEwen, K.6
Crabtree, D.7
Afshar, J.8
Nugent, R.9
Hamilton, M.10
-
32
-
-
84883802093
-
Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica
-
32 Xue, Z., Sharpe, P.L., Hong, S.-P., Yadav, N., Xie, D., Short, D., Damude, H., Rupert, R., Seip, J., Wang, J., et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol 31 (2013), 734–740.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 734-740
-
-
Xue, Z.1
Sharpe, P.L.2
Hong, S.-P.3
Yadav, N.4
Xie, D.5
Short, D.6
Damude, H.7
Rupert, R.8
Seip, J.9
Wang, J.10
-
33
-
-
84877315991
-
Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica
-
33 Blazeck, J., Liu, L., Knight, R., Alper, H.S., Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica. J Biotechnol 165 (2013), 184–194.
-
(2013)
J Biotechnol
, vol.165
, pp. 184-194
-
-
Blazeck, J.1
Liu, L.2
Knight, R.3
Alper, H.S.4
-
34
-
-
84947714060
-
Modular and selective biosynthesis of gasoline-range alkanes
-
Example of isolating each major reaction step into modules for efficient pathway engineering. Use of multiple modules to selectively produce different alkane products in E. coli.
-
34• Sheppard, M.J., Kunjapur, A.M., Prather, K.L.J., Modular and selective biosynthesis of gasoline-range alkanes. Metab Eng 33 (2016), 28–40 Example of isolating each major reaction step into modules for efficient pathway engineering. Use of multiple modules to selectively produce different alkane products in E. coli.
-
(2016)
Metab Eng
, vol.33
, pp. 28-40
-
-
Sheppard, M.J.1
Kunjapur, A.M.2
Prather, K.L.J.3
-
35
-
-
84886996793
-
Production of medium chain length fatty alcohols from glucose in Escherichia coli
-
35 Youngquist, J.T., Schumacher, M.H., Rose, J.P., Raines, T.C., Politz, M.C., Copeland, M.F., Pfleger, B.F., Production of medium chain length fatty alcohols from glucose in Escherichia coli. Metab Eng 20 (2013), 177–186.
-
(2013)
Metab Eng
, vol.20
, pp. 177-186
-
-
Youngquist, J.T.1
Schumacher, M.H.2
Rose, J.P.3
Raines, T.C.4
Politz, M.C.5
Copeland, M.F.6
Pfleger, B.F.7
-
36
-
-
84925355604
-
Biosynthesis of odd-chain fatty alcohols in Escherichia coli
-
36 Cao, Y.-X., Xiao, W.-H., Liu, D., Zhang, J.L., Ding, M.Z., Yuan, Y.J., Biosynthesis of odd-chain fatty alcohols in Escherichia coli. Metab Eng 29 (2015), 113–123.
-
(2015)
Metab Eng
, vol.29
, pp. 113-123
-
-
Cao, Y.-X.1
Xiao, W.-H.2
Liu, D.3
Zhang, J.L.4
Ding, M.Z.5
Yuan, Y.J.6
-
37
-
-
84957954289
-
Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose
-
37 Guo, W., Sheng, J., Zhao, H., Feng, X., Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose. Microb Cell Factories 15 (2016), 1–11.
-
(2016)
Microb Cell Factories
, vol.15
, pp. 1-11
-
-
Guo, W.1
Sheng, J.2
Zhao, H.3
Feng, X.4
-
38
-
-
79958709458
-
Metabolic engineering of Clostridium tyrobutyricum for n-butanol production
-
38 Yu, M., Zhang, Y., Tang, I.C., Yang, S.-T., Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab Eng 13 (2011), 373–382.
-
(2011)
Metab Eng
, vol.13
, pp. 373-382
-
-
Yu, M.1
Zhang, Y.2
Tang, I.C.3
Yang, S.-T.4
-
39
-
-
84951739105
-
Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production
-
39 Kang, A., George, K.W., Wang, G., Baidoo, E., Keasling, J., Lee, T., Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production. Metab Eng 34 (2016), 25–35.
-
(2016)
Metab Eng
, vol.34
, pp. 25-35
-
-
Kang, A.1
George, K.W.2
Wang, G.3
Baidoo, E.4
Keasling, J.5
Lee, T.6
-
40
-
-
84961599119
-
Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis
-
40 Cardenas, J., Da Silva, N.A., Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Metab Eng 36 (2016), 80–89.
-
(2016)
Metab Eng
, vol.36
, pp. 80-89
-
-
Cardenas, J.1
Da Silva, N.A.2
-
41
-
-
84939955740
-
Triacetic acid lactone production in industrial Saccharomyces yeast strains
-
41 Saunders, L.P., Bowman, M.J., Mertens, J.A., Da Silva, N., Hector, R.E., Triacetic acid lactone production in industrial Saccharomyces yeast strains. J Ind Microbiol Biotechnol 42 (2015), 711–721.
-
(2015)
J Ind Microbiol Biotechnol
, vol.42
, pp. 711-721
-
-
Saunders, L.P.1
Bowman, M.J.2
Mertens, J.A.3
Da Silva, N.4
Hector, R.E.5
-
42
-
-
84949035742
-
Biosynthetic engineering and fermentation media development leads to gram-scale production of spliceostatin natural products in Burkholderia sp
-
42 Eustáquio, A.S., Chang, L.-P., Steele, G.L., O'Donnell, C.J., Koehn, F.E., Biosynthetic engineering and fermentation media development leads to gram-scale production of spliceostatin natural products in Burkholderia sp. Metab Eng 33 (2016), 67–75.
-
(2016)
Metab Eng
, vol.33
, pp. 67-75
-
-
Eustáquio, A.S.1
Chang, L.-P.2
Steele, G.L.3
O'Donnell, C.J.4
Koehn, F.E.5
-
43
-
-
84876784070
-
High-level semi-synthetic production of the potent antimalarial artemisinin
-
43 Paddon, C.J., Westfall, P.J., Pitera, D.J., Benjamin, K., Fisher, K., McPhee, D., Leavell, M.D., Tai, A., Main, A., Eng, D., et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496 (2013), 528–532.
-
(2013)
Nature
, vol.496
, pp. 528-532
-
-
Paddon, C.J.1
Westfall, P.J.2
Pitera, D.J.3
Benjamin, K.4
Fisher, K.5
McPhee, D.6
Leavell, M.D.7
Tai, A.8
Main, A.9
Eng, D.10
-
44
-
-
84856389651
-
Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin
-
44 Westfall, P.J., Pitera, D.J., Lenihan, J.R., Eng, D., Woolard, F.X., Regentin, R., Horning, T., Tsuruta, H., Melis, D.J., Owens, A., et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci 109 (2012), E111–E118.
-
(2012)
Proc Natl Acad Sci
, vol.109
, pp. E111-E118
-
-
Westfall, P.J.1
Pitera, D.J.2
Lenihan, J.R.3
Eng, D.4
Woolard, F.X.5
Regentin, R.6
Horning, T.7
Tsuruta, H.8
Melis, D.J.9
Owens, A.10
-
45
-
-
84886486790
-
Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides
-
45 Dai, Z., Liu, Y., Zhang, X., Shi, M., Wang, B., Wang, D., Huang, L., Zhang, X., Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng 20 (2013), 146–156.
-
(2013)
Metab Eng
, vol.20
, pp. 146-156
-
-
Dai, Z.1
Liu, Y.2
Zhang, X.3
Shi, M.4
Wang, B.5
Wang, D.6
Huang, L.7
Zhang, X.8
-
46
-
-
84863116515
-
Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production
-
46 Zhou, Y.J., Gao, W., Rong, Q., Jin, G., Chu, H., Liu, W., Yang, W., Zhu, Z., Li, G., Zhu, G., et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc 134 (2012), 3234–3241.
-
(2012)
J Am Chem Soc
, vol.134
, pp. 3234-3241
-
-
Zhou, Y.J.1
Gao, W.2
Rong, Q.3
Jin, G.4
Chu, H.5
Liu, W.6
Yang, W.7
Zhu, Z.8
Li, G.9
Zhu, G.10
-
47
-
-
84862207929
-
Expanding the chemical palate of cells by combining systems biology and metabolic engineering
-
47 Curran, K.A., Alper, H.S., Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metab Eng 14 (2012), 289–297.
-
(2012)
Metab Eng
, vol.14
, pp. 289-297
-
-
Curran, K.A.1
Alper, H.S.2
|