메뉴 건너뛰기




Volumn 35, Issue , 2016, Pages 37-42

Central metabolic nodes for diverse biochemical production

Author keywords

[No Author keywords available]

Indexed keywords

ACETYL COENZYME A; ASPARTIC ACID; CITRIC ACID; FATTY ACID; PYRUVIC ACID; TERPENE DERIVATIVE; TYROSINE;

EID: 84984876837     PISSN: 13675931     EISSN: 18790402     Source Type: Journal    
DOI: 10.1016/j.cbpa.2016.08.025     Document Type: Review
Times cited : (31)

References (47)
  • 1
    • 77956501842 scopus 로고    scopus 로고
    • Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy
    • 1 Noor, E., Eden, E., Milo, R., Alon, U., Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Mol Cell 39 (2010), 809–820.
    • (2010) Mol Cell , vol.39 , pp. 809-820
    • Noor, E.1    Eden, E.2    Milo, R.3    Alon, U.4
  • 2
    • 0002163903 scopus 로고    scopus 로고
    • Structural properties of metabolic networks: implications for evolution and modelling of metabolism
    • J.-H.S. Hofmeyr J.M. Rohwer J.L. Snoep Stellenbosch University Press Stellenbosch
    • 2 Fell, D.A., Wagner, A., Structural properties of metabolic networks: implications for evolution and modelling of metabolism. Hofmeyr, J.-H.S., Rohwer, J.M., Snoep, J.L., (eds.) Animating the cellular map, 2000, Stellenbosch University Press, Stellenbosch, 79–85.
    • (2000) Animating the cellular map , pp. 79-85
    • Fell, D.A.1    Wagner, A.2
  • 3
    • 13244288422 scopus 로고    scopus 로고
    • Top Value Added Chemicals from Biomass-Vol 1: Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Pacific Northwest National Laboratory
    • National Renewable Energy Laboratory and Department of Energy
    • 3 Werpy, T., Petersen, G., Aden, A., Bozell, J., Holladay, J., White, J., Manheim, A., Eliot, D., Lasure, L., Jones, S., Top Value Added Chemicals from Biomass-Vol 1: Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Pacific Northwest National Laboratory. 2004, National Renewable Energy Laboratory and Department of Energy.
    • (2004)
    • Werpy, T.1    Petersen, G.2    Aden, A.3    Bozell, J.4    Holladay, J.5    White, J.6    Manheim, A.7    Eliot, D.8    Lasure, L.9    Jones, S.10
  • 4
    • 84923809316 scopus 로고    scopus 로고
    • Biorefineries for the production of top building block chemicals and their derivatives
    • Review of DOE report and 2010 update of additional value added chemicals with particular consideration of molecules in industrial development or production.
    • 4•• Choi, S., Song, C.W., Shin, J.H., Lee, S.Y., Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28 (2015), 223–239 Review of DOE report and 2010 update of additional value added chemicals with particular consideration of molecules in industrial development or production.
    • (2015) Metab Eng , vol.28 , pp. 223-239
    • Choi, S.1    Song, C.W.2    Shin, J.H.3    Lee, S.Y.4
  • 5
    • 84938765758 scopus 로고    scopus 로고
    • Synthetic biology for specialty chemicals
    • Review of metabolic engineering and synthetic biology tools and efforts to produce fuels, commodity and specialty chemicals.
    • 5• Markham, K.A., Alper, H.S., Synthetic biology for specialty chemicals. Annu Rev Chem Biomol Eng 6 (2015), 35–52 Review of metabolic engineering and synthetic biology tools and efforts to produce fuels, commodity and specialty chemicals.
    • (2015) Annu Rev Chem Biomol Eng , vol.6 , pp. 35-52
    • Markham, K.A.1    Alper, H.S.2
  • 6
    • 84979157963 scopus 로고    scopus 로고
    • 3D Printing with Biomaterials: Towards a Sustainable and Circular Economy
    • IOS Press
    • 6 Ad van Wijk, IvW., 3D Printing with Biomaterials: Towards a Sustainable and Circular Economy. 2015, IOS Press.
    • (2015)
    • Ad van Wijk, I.1
  • 7
    • 84963516758 scopus 로고    scopus 로고
    • One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli
    • 7 Choi, S.Y., Park, S.J., Kim, W.J., Yang, J.E., Lee, H., Shin, H., Lee, S.Y., One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nat Biotechnol 34 (2016), 435–440.
    • (2016) Nat Biotechnol , vol.34 , pp. 435-440
    • Choi, S.Y.1    Park, S.J.2    Kim, W.J.3    Yang, J.E.4    Lee, H.5    Shin, H.6    Lee, S.Y.7
  • 8
    • 84924040473 scopus 로고    scopus 로고
    • Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid
    • 8 Lee, J.Y., Kang, C.D., Lee, S.H., Park, Y.K., Cho, K.M., Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid. Biotechnol Bioeng 112 (2015), 751–758.
    • (2015) Biotechnol Bioeng , vol.112 , pp. 751-758
    • Lee, J.Y.1    Kang, C.D.2    Lee, S.H.3    Park, Y.K.4    Cho, K.M.5
  • 9
    • 84869874625 scopus 로고    scopus 로고
    • Highly accumulative production of l(+)-lactate from glucose by crystallization fermentation with immobilized Rhizopus oryzae
    • 9 Yamane, T., Tanaka, R., Highly accumulative production of l(+)-lactate from glucose by crystallization fermentation with immobilized Rhizopus oryzae. J Biosci Bioeng 115 (2013), 90–95.
    • (2013) J Biosci Bioeng , vol.115 , pp. 90-95
    • Yamane, T.1    Tanaka, R.2
  • 11
    • 38049001166 scopus 로고    scopus 로고
    • Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
    • 11 Atsumi, S., Hanai, T., Liao, J.C., Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 2008, 451.
    • (2008) Nature , pp. 451
    • Atsumi, S.1    Hanai, T.2    Liao, J.C.3
  • 12
    • 84933073492 scopus 로고    scopus 로고
    • Two-dimensional isobutyl acetate production pathways to improve carbon yield
    • 12 Tashiro, Y., Desai, S.H., Atsumi, S., Two-dimensional isobutyl acetate production pathways to improve carbon yield. Nat Commun, 2015, 6.
    • (2015) Nat Commun , pp. 6
    • Tashiro, Y.1    Desai, S.H.2    Atsumi, S.3
  • 13
    • 84897025067 scopus 로고    scopus 로고
    • Expanding ester biosynthesis in Escherichia coli
    • 13 Rodriguez, G.M., Tashiro, Y., Atsumi, S., Expanding ester biosynthesis in Escherichia coli. Nat Chem Biol 10 (2014), 259–265.
    • (2014) Nat Chem Biol , vol.10 , pp. 259-265
    • Rodriguez, G.M.1    Tashiro, Y.2    Atsumi, S.3
  • 14
    • 84925235492 scopus 로고    scopus 로고
    • Enhancing fatty acid ethyl ester production in Saccharomyces cerevisiae through metabolic engineering and medium optimization
    • 14 Thompson, R.A., Trinh, C.T., Enhancing fatty acid ethyl ester production in Saccharomyces cerevisiae through metabolic engineering and medium optimization. Biotechnol Bioeng 111 (2014), 2200–2208.
    • (2014) Biotechnol Bioeng , vol.111 , pp. 2200-2208
    • Thompson, R.A.1    Trinh, C.T.2
  • 15
    • 84893503533 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for production of fatty acid short-chain esters through combination of the fatty acid and 2-keto acid pathways
    • 15 Guo, D., Zhu, J., Deng, Z., Liu, T., Metabolic engineering of Escherichia coli for production of fatty acid short-chain esters through combination of the fatty acid and 2-keto acid pathways. Metab Eng 22 (2014), 69–75.
    • (2014) Metab Eng , vol.22 , pp. 69-75
    • Guo, D.1    Zhu, J.2    Deng, Z.3    Liu, T.4
  • 16
    • 77955664336 scopus 로고    scopus 로고
    • Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase
    • 16 Liu, X.-Y., Chi, Z., Liu, G.-L., Wang, F., Madzak, C., Chi, Z.-M., Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase. Metab Eng 12 (2010), 469–476.
    • (2010) Metab Eng , vol.12 , pp. 469-476
    • Liu, X.-Y.1    Chi, Z.2    Liu, G.-L.3    Wang, F.4    Madzak, C.5    Chi, Z.-M.6
  • 17
    • 84952663246 scopus 로고    scopus 로고
    • Biobased organic acids production by metabolically engineered microorganisms
    • Extensive review of citric acid and lactic acid as commercially viable biobased chemicals produced at industrially relevant levels (>100 g/L).
    • 17•• Chen, Y., Nielsen, J., Biobased organic acids production by metabolically engineered microorganisms. Curr Opin Biotechnol 37 (2016), 165–172 Extensive review of citric acid and lactic acid as commercially viable biobased chemicals produced at industrially relevant levels (>100 g/L).
    • (2016) Curr Opin Biotechnol , vol.37 , pp. 165-172
    • Chen, Y.1    Nielsen, J.2
  • 18
    • 84942598369 scopus 로고    scopus 로고
    • Metabolic engineering of Yarrowia lipolytica for itaconic acid production
    • 18 Blazeck, J., Hill, A., Jamoussi, M., Pan, A., Miller, J., Alper, H., Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metab Eng 32 (2015), 66–73.
    • (2015) Metab Eng , vol.32 , pp. 66-73
    • Blazeck, J.1    Hill, A.2    Jamoussi, M.3    Pan, A.4    Miller, J.5    Alper, H.6
  • 19
    • 84903782489 scopus 로고    scopus 로고
    • Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in Escherichia coli
    • Metabolic engineering effort focused on modular units to produce precursors (tyrosine, malyonyl-CoA) in addition to production pathway.
    • 19• Wu, J., Zhou, T., Du, G., Zhou, J., Chen, J., Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in Escherichia coli. Public Libr Sci ONE, 9, 2014, e101492 Metabolic engineering effort focused on modular units to produce precursors (tyrosine, malyonyl-CoA) in addition to production pathway.
    • (2014) Public Libr Sci ONE , vol.9 , pp. e101492
    • Wu, J.1    Zhou, T.2    Du, G.3    Zhou, J.4    Chen, J.5
  • 20
    • 79958715193 scopus 로고    scopus 로고
    • Optimization of a heterologous pathway for the production of flavonoids from glucose
    • 20 Santos, C.N.S., Koffas, M., Stephanopoulos, G., Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng 13 (2011), 392–400.
    • (2011) Metab Eng , vol.13 , pp. 392-400
    • Santos, C.N.S.1    Koffas, M.2    Stephanopoulos, G.3
  • 21
    • 84986254065 scopus 로고    scopus 로고
    • Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis
    • 21 Rodriguez, A., Kildegaard, K.R., Li, M., Borodina, I., Nielsen, J., Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng 31 (2015), 181–188.
    • (2015) Metab Eng , vol.31 , pp. 181-188
    • Rodriguez, A.1    Kildegaard, K.R.2    Li, M.3    Borodina, I.4    Nielsen, J.5
  • 22
    • 84958250665 scopus 로고    scopus 로고
    • Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids
    • 22 Jones, J.A., Vernacchio, V.R., Sinkoe, A.L., Collins, S.M., Ibrahim, M.H.A., Lachance, D.M., Hahn, J., Koffas, M., Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab Eng 35 (2016), 55–63.
    • (2016) Metab Eng , vol.35 , pp. 55-63
    • Jones, J.A.1    Vernacchio, V.R.2    Sinkoe, A.L.3    Collins, S.M.4    Ibrahim, M.H.A.5    Lachance, D.M.6    Hahn, J.7    Koffas, M.8
  • 23
    • 84905113885 scopus 로고    scopus 로고
    • Production of kaempferol 3-O-rhamnoside from glucose using engineered Escherichia coli
    • 23 Yang, S.-M., Han, S.H., Kim, B.-G., Ahn, J.-H., Production of kaempferol 3-O-rhamnoside from glucose using engineered Escherichia coli. J Ind Microbiol Biotechnol 41 (2014), 1311–1318.
    • (2014) J Ind Microbiol Biotechnol , vol.41 , pp. 1311-1318
    • Yang, S.-M.1    Han, S.H.2    Kim, B.-G.3    Ahn, J.-H.4
  • 25
    • 84941346066 scopus 로고    scopus 로고
    • Complete biosynthesis of opioids in yeast
    • Metabolic engineering of S. cerevisiae to produce thebaine and hydrocodone from tyrosine via introduction of 23 genes under 6 different modules. Excellent proof of concept paper for generating complex plant bioproducts using microbes.
    • 25•• Galanie, S., Thodey, K., Trenchard, I.J., Interrante, M.F., Smolke, C.D., Complete biosynthesis of opioids in yeast. Science 349 (2015), 1095–1100 Metabolic engineering of S. cerevisiae to produce thebaine and hydrocodone from tyrosine via introduction of 23 genes under 6 different modules. Excellent proof of concept paper for generating complex plant bioproducts using microbes.
    • (2015) Science , vol.349 , pp. 1095-1100
    • Galanie, S.1    Thodey, K.2    Trenchard, I.J.3    Interrante, M.F.4    Smolke, C.D.5
  • 26
    • 54349114978 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways
    • 26 Shen, C.R., Liao, J.C., Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10 (2008), 312–320.
    • (2008) Metab Eng , vol.10 , pp. 312-320
    • Shen, C.R.1    Liao, J.C.2
  • 27
    • 84930936873 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid
    • Recent efforts using aspartate as precurosor in a fumarate-overproducing strain of E. coli in conjunction with synthetic promoters to produce of 3-aminopropionic acid.
    • 27• Song, C.W., Lee, J., Ko, Y.-S., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metab Eng 30 (2015), 121–129 Recent efforts using aspartate as precurosor in a fumarate-overproducing strain of E. coli in conjunction with synthetic promoters to produce of 3-aminopropionic acid.
    • (2015) Metab Eng , vol.30 , pp. 121-129
    • Song, C.W.1    Lee, J.2    Ko, Y.-S.3    Lee, S.Y.4
  • 28
    • 84920194778 scopus 로고    scopus 로고
    • Microbial acetyl-CoA metabolism and metabolic engineering
    • Extensive review of acetyl-CoA metabolism in S. cerevisiae and E. coli with a focus on enzymes characterization.
    • 28•• Krivoruchko, A., Zhang, Y., Siewers, V., Chen, Y., Nielsen, J., Microbial acetyl-CoA metabolism and metabolic engineering. Metab Eng 28 (2015), 28–42 Extensive review of acetyl-CoA metabolism in S. cerevisiae and E. coli with a focus on enzymes characterization.
    • (2015) Metab Eng , vol.28 , pp. 28-42
    • Krivoruchko, A.1    Zhang, Y.2    Siewers, V.3    Chen, Y.4    Nielsen, J.5
  • 29
    • 84877804801 scopus 로고    scopus 로고
    • Modular optimization of multi-gene pathways for fatty acids production in E. coli
    • 29 Xu, P., Gu, Q., Wang, W., Wong, L., Bower, A., Collins, C., Koffas, M., Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun, 4, 2013, 1409.
    • (2013) Nat Commun , vol.4 , pp. 1409
    • Xu, P.1    Gu, Q.2    Wang, W.3    Wong, L.4    Bower, A.5    Collins, C.6    Koffas, M.7
  • 30
    • 84924176808 scopus 로고    scopus 로고
    • An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica
    • 30 Liu, L., Pan, A., Spofford, C., Zhou, N., Alper, H., An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica. Metab Eng 29 (2015), 36–45.
    • (2015) Metab Eng , vol.29 , pp. 36-45
    • Liu, L.1    Pan, A.2    Spofford, C.3    Zhou, N.4    Alper, H.5
  • 33
    • 84877315991 scopus 로고    scopus 로고
    • Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica
    • 33 Blazeck, J., Liu, L., Knight, R., Alper, H.S., Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica. J Biotechnol 165 (2013), 184–194.
    • (2013) J Biotechnol , vol.165 , pp. 184-194
    • Blazeck, J.1    Liu, L.2    Knight, R.3    Alper, H.S.4
  • 34
    • 84947714060 scopus 로고    scopus 로고
    • Modular and selective biosynthesis of gasoline-range alkanes
    • Example of isolating each major reaction step into modules for efficient pathway engineering. Use of multiple modules to selectively produce different alkane products in E. coli.
    • 34• Sheppard, M.J., Kunjapur, A.M., Prather, K.L.J., Modular and selective biosynthesis of gasoline-range alkanes. Metab Eng 33 (2016), 28–40 Example of isolating each major reaction step into modules for efficient pathway engineering. Use of multiple modules to selectively produce different alkane products in E. coli.
    • (2016) Metab Eng , vol.33 , pp. 28-40
    • Sheppard, M.J.1    Kunjapur, A.M.2    Prather, K.L.J.3
  • 36
    • 84925355604 scopus 로고    scopus 로고
    • Biosynthesis of odd-chain fatty alcohols in Escherichia coli
    • 36 Cao, Y.-X., Xiao, W.-H., Liu, D., Zhang, J.L., Ding, M.Z., Yuan, Y.J., Biosynthesis of odd-chain fatty alcohols in Escherichia coli. Metab Eng 29 (2015), 113–123.
    • (2015) Metab Eng , vol.29 , pp. 113-123
    • Cao, Y.-X.1    Xiao, W.-H.2    Liu, D.3    Zhang, J.L.4    Ding, M.Z.5    Yuan, Y.J.6
  • 37
    • 84957954289 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose
    • 37 Guo, W., Sheng, J., Zhao, H., Feng, X., Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose. Microb Cell Factories 15 (2016), 1–11.
    • (2016) Microb Cell Factories , vol.15 , pp. 1-11
    • Guo, W.1    Sheng, J.2    Zhao, H.3    Feng, X.4
  • 38
    • 79958709458 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium tyrobutyricum for n-butanol production
    • 38 Yu, M., Zhang, Y., Tang, I.C., Yang, S.-T., Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab Eng 13 (2011), 373–382.
    • (2011) Metab Eng , vol.13 , pp. 373-382
    • Yu, M.1    Zhang, Y.2    Tang, I.C.3    Yang, S.-T.4
  • 39
    • 84951739105 scopus 로고    scopus 로고
    • Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production
    • 39 Kang, A., George, K.W., Wang, G., Baidoo, E., Keasling, J., Lee, T., Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production. Metab Eng 34 (2016), 25–35.
    • (2016) Metab Eng , vol.34 , pp. 25-35
    • Kang, A.1    George, K.W.2    Wang, G.3    Baidoo, E.4    Keasling, J.5    Lee, T.6
  • 40
    • 84961599119 scopus 로고    scopus 로고
    • Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis
    • 40 Cardenas, J., Da Silva, N.A., Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Metab Eng 36 (2016), 80–89.
    • (2016) Metab Eng , vol.36 , pp. 80-89
    • Cardenas, J.1    Da Silva, N.A.2
  • 42
    • 84949035742 scopus 로고    scopus 로고
    • Biosynthetic engineering and fermentation media development leads to gram-scale production of spliceostatin natural products in Burkholderia sp
    • 42 Eustáquio, A.S., Chang, L.-P., Steele, G.L., O'Donnell, C.J., Koehn, F.E., Biosynthetic engineering and fermentation media development leads to gram-scale production of spliceostatin natural products in Burkholderia sp. Metab Eng 33 (2016), 67–75.
    • (2016) Metab Eng , vol.33 , pp. 67-75
    • Eustáquio, A.S.1    Chang, L.-P.2    Steele, G.L.3    O'Donnell, C.J.4    Koehn, F.E.5
  • 45
    • 84886486790 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides
    • 45 Dai, Z., Liu, Y., Zhang, X., Shi, M., Wang, B., Wang, D., Huang, L., Zhang, X., Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng 20 (2013), 146–156.
    • (2013) Metab Eng , vol.20 , pp. 146-156
    • Dai, Z.1    Liu, Y.2    Zhang, X.3    Shi, M.4    Wang, B.5    Wang, D.6    Huang, L.7    Zhang, X.8
  • 46
    • 84863116515 scopus 로고    scopus 로고
    • Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production
    • 46 Zhou, Y.J., Gao, W., Rong, Q., Jin, G., Chu, H., Liu, W., Yang, W., Zhu, Z., Li, G., Zhu, G., et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc 134 (2012), 3234–3241.
    • (2012) J Am Chem Soc , vol.134 , pp. 3234-3241
    • Zhou, Y.J.1    Gao, W.2    Rong, Q.3    Jin, G.4    Chu, H.5    Liu, W.6    Yang, W.7    Zhu, Z.8    Li, G.9    Zhu, G.10
  • 47
    • 84862207929 scopus 로고    scopus 로고
    • Expanding the chemical palate of cells by combining systems biology and metabolic engineering
    • 47 Curran, K.A., Alper, H.S., Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metab Eng 14 (2012), 289–297.
    • (2012) Metab Eng , vol.14 , pp. 289-297
    • Curran, K.A.1    Alper, H.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.