메뉴 건너뛰기




Volumn 17, Issue 12, 2016, Pages 743-755

Genome-wide mapping and analysis of chromosome architecture

Author keywords

[No Author keywords available]

Indexed keywords

CHROMATIN; CHROMOSOME STRUCTURE; CONFORMATION; GENE MAPPING; GENOME ANALYSIS; HIGH THROUGHPUT SCREENING; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; REVIEW; STATISTICAL BIAS; THREE DIMENSIONAL IMAGING; ANIMAL; CHROMOSOMAL MAPPING; CHROMOSOME; COMPUTER SIMULATION; HUMAN; MOLECULAR MODEL; ULTRASTRUCTURE;

EID: 84984804790     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm.2016.104     Document Type: Review
Times cited : (272)

References (119)
  • 1
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • ENCODE Project Consortium
    • ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74 (2012).
    • (2012) Nature , vol.489 , pp. 57-74
  • 2
    • 84923362619 scopus 로고    scopus 로고
    • Integrative analysis of 111 reference human epigenomes
    • Roadmap Epigenomics Consortium et al
    • Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317-330 (2015).
    • (2015) Nature , vol.518 , pp. 317-330
  • 3
    • 84875190221 scopus 로고    scopus 로고
    • Genome architecture: Domain organization of interphase chromosomes
    • Bickmore W. A, & van Steensel B. Genome architecture: domain organization of interphase chromosomes. Cell 152, 1270-1284 (2013).
    • (2013) Cell , vol.152 , pp. 1270-1284
    • Bickmore, W.A.1    Van Steensel, B.2
  • 4
    • 84886853624 scopus 로고    scopus 로고
    • Topology of mammalian developmental enhancers and their regulatory landscapes
    • de Laat W, & Duboule D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502, 499-506 (2013).
    • (2013) Nature , vol.502 , pp. 499-506
    • De Laat, W.1    Duboule, D.2
  • 5
    • 84855297335 scopus 로고    scopus 로고
    • A decade of 3C technologies: Insights into nuclear organization
    • de Wit E, & de Laat W. A decade of 3C technologies: insights into nuclear organization. Genes Dev. 26, 11-24 (2012).
    • (2012) Genes Dev , vol.26 , pp. 11-24
    • De Wit, E.1    De Laat, W.2
  • 6
    • 84861095603 scopus 로고    scopus 로고
    • Topological domains in mammalian genomes identified by analysis of chromatin interactions
    • Dixon J. R, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376-380 (2012).
    • (2012) Nature , vol.485 , pp. 376-380
    • Dixon, J.R.1
  • 7
    • 84902212007 scopus 로고    scopus 로고
    • The 3D genome in transcriptional regulation and pluripotency
    • Gorkin D. U, Leung D, & Ren B. The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 14, 762-775 (2014).
    • (2014) Cell Stem Cell , vol.14 , pp. 762-775
    • Gorkin, D.U.1    Leung, D.2    Ren, B.3
  • 8
    • 84897138228 scopus 로고    scopus 로고
    • Looping back to leap forward: Transcription enters a new era
    • Levine M, Cattoglio C, & Tjian R. Looping back to leap forward: transcription enters a new era. Cell 157, 13-25 (2014).
    • (2014) Cell , vol.157 , pp. 13-25
    • Levine, M.1    Cattoglio, C.2    Tjian, R.3
  • 9
    • 84881613036 scopus 로고    scopus 로고
    • Segmental folding of chromosomes: A basis for structural and regulatory chromosomal neighborhoods?
    • Nora E. P, Dekker J, & Heard E. Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods?. Bioessays 35, 818-828 (2013).
    • (2013) Bioessays , vol.35 , pp. 818-828
    • Nora, E.P.1    Dekker, J.2    Heard, E.3
  • 10
    • 84861100147 scopus 로고    scopus 로고
    • Spatial partitioning of the regulatory landscape of the X inactivation centre
    • Nora E. P, et al. Spatial partitioning of the regulatory landscape of the X inactivation centre. Nature 485, 381-385 (2012).
    • (2012) Nature , vol.485 , pp. 381-385
    • Nora, E.P.1
  • 11
    • 84878860751 scopus 로고    scopus 로고
    • Architectural protein subclasses shape 3D organization of genomes during lineage commitment
    • Phillips-Cremins J. E, et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281-1295 (2013).
    • (2013) Cell , vol.153 , pp. 1281-1295
    • Phillips-Cremins, J.E.1
  • 12
    • 84908439526 scopus 로고    scopus 로고
    • Reactivation of developmentally silenced globin genes by forced chromatin looping
    • Deng W, et al. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 158, 849-860 (2014).
    • (2014) Cell , vol.158 , pp. 849-860
    • Deng, W.1
  • 13
    • 84861964135 scopus 로고    scopus 로고
    • Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor
    • Deng W, et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233-1244 (2012).
    • (2012) Cell , vol.149 , pp. 1233-1244
    • Deng, W.1
  • 14
    • 84861057518 scopus 로고    scopus 로고
    • Chromatin loop formation in the β-globin locus and its role in globin gene transcription
    • Kim A, & Dean A. Chromatin loop formation in the β-globin locus and its role in globin gene transcription. Mol. Cells 34, 1-5 (2012).
    • (2012) Mol. Cells , vol.34 , pp. 1-5
    • Kim, A.1    Dean, A.2
  • 15
    • 84860379799 scopus 로고    scopus 로고
    • Enhancer and promoter interactions-long distance calls
    • Krivega I, & Dean A. Enhancer and promoter interactions-long distance calls. Curr. Opin. Genet. Dev. 22, 79-85 (2012).
    • (2012) Curr. Opin. Genet. Dev , vol.22 , pp. 79-85
    • Krivega, I.1    Dean, A.2
  • 16
    • 84903697261 scopus 로고    scopus 로고
    • Enhancer function: Mechanistic and genome-wide insights come together
    • Plank J. L, & Dean A. Enhancer function: mechanistic and genome-wide insights come together. Mol. Cell 55, 5-14 (2014).
    • (2014) Mol. Cell , vol.55 , pp. 5-14
    • Plank, J.L.1    Dean, A.2
  • 17
    • 84916880365 scopus 로고    scopus 로고
    • Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes
    • Dowen J. M, et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159, 374-387 (2014).
    • (2014) Cell , vol.159 , pp. 374-387
    • Dowen, J.M.1
  • 18
    • 84913537605 scopus 로고    scopus 로고
    • Genome-wide map of regulatory interactions in the human genome
    • Heidari N, et al. Genome-wide map of regulatory interactions in the human genome. Genome Res. 24, 1905-1917 (2014).
    • (2014) Genome Res , vol.24 , pp. 1905-1917
    • Heidari, N.1
  • 19
    • 84887620842 scopus 로고    scopus 로고
    • A high-resolution map of the three-dimensional chromatin interactome in human cells
    • Jin F, et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503 290-294 (2013).
    • (2013) Nature , vol.503 , pp. 290-294
    • Jin, F.1
  • 20
    • 84862908850 scopus 로고    scopus 로고
    • Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation
    • Li G, et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84-98 (2012).
    • (2012) Cell , vol.148 , pp. 84-98
    • Li, G.1
  • 21
    • 84865800494 scopus 로고    scopus 로고
    • The long range interaction landscape of gene promoters
    • Sanyal A, Lajoie B. R, Jain G, & Dekker J. The long range interaction landscape of gene promoters. Nature 489, 109-113 (2012).
    • (2012) Nature , vol.489 , pp. 109-113
    • Sanyal, A.1    Lajoie, B.R.2    Jain, G.3    Dekker, J.4
  • 22
    • 70349873824 scopus 로고    scopus 로고
    • Comprehensive mapping of long-range interactions reveals folding principles of the human genome
    • Lieberman-Aiden E, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293 (2009).
    • (2009) Science , vol.326 , pp. 289-293
    • Lieberman-Aiden, E.1
  • 23
    • 70449103609 scopus 로고    scopus 로고
    • An oestrogen-receptor-α-bound human chromatin interactome
    • Fullwood M. J, et al. An oestrogen-receptor-α-bound human chromatin interactome. Nature 462, 58-64 (2009).
    • (2009) Nature , vol.462 , pp. 58-64
    • Fullwood, M.J.1
  • 24
    • 84862917808 scopus 로고    scopus 로고
    • Genome architectures revealed by tethered chromosome conformation capture and population-based modeling
    • Kalhor R, Tjong H, Jayathilaka N, Alber F, & Chen L. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol. 30, 90-98 (2012).
    • (2012) Nat. Biotechnol , vol.30 , pp. 90-98
    • Kalhor, R.1    Tjong, H.2    Jayathilaka, N.3    Alber, F.4    Chen, L.5
  • 25
    • 84895832107 scopus 로고    scopus 로고
    • Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-Throughput experiment
    • Hughes J. R, et al. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-Throughput experiment. Nat. Genet. 46, 205-212 (2014).
    • (2014) Nat. Genet , vol.46 , pp. 205-212
    • Hughes, J.R.1
  • 26
    • 84904412804 scopus 로고    scopus 로고
    • Targeted chromatin capture (T2C): A novel high resolution high throughput method to detect genomic interactions and regulatory elements
    • Kolovos P, et al. Targeted chromatin capture (T2C): a novel high resolution high throughput method to detect genomic interactions and regulatory elements. Epigenetics Chromatin 7, 10 (2014).
    • (2014) Epigenetics Chromatin , vol.7 , pp. 10
    • Kolovos, P.1
  • 27
    • 84919949716 scopus 로고    scopus 로고
    • A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping
    • Rao S. S, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159 1665-1680 (2014).
    • (2014) Cell , vol.159 , pp. 1665-1680
    • Rao, S.S.1
  • 28
    • 84890023970 scopus 로고    scopus 로고
    • Whole genome haplotype reconstruction using proximity-ligation and shotgun sequencing
    • Selvaraj S, R. Dixon J, Bansal V, & Ren B. Whole genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat. Biotechnol. 31, 1111-1118 (2013).
    • (2013) Nat. Biotechnol , vol.31 , pp. 1111-1118
    • Selvaraj, S.R.1    Dixon, J.2    Bansal, V.3    Ren, B.4
  • 29
    • 84959203950 scopus 로고    scopus 로고
    • Complete haplotype phasing of the MHC and kir loci with targeted haploseq
    • Selvaraj S, Schmitt A. D, Dixon J. R, & Ren B. Complete haplotype phasing of the MHC and KIR loci with targeted HaploSeq. BMC Genomics 16, 900 (2015).
    • (2015) BMC Genomics , vol.16 , pp. 900
    • Selvaraj, S.1    Schmitt, A.D.2    Dixon, J.R.3    Ren, B.4
  • 30
    • 84922273986 scopus 로고    scopus 로고
    • Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping
    • de Vree P. J, et al. Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nat. Biotechnol. 32, 1019-1025 (2014).
    • (2014) Nat. Biotechnol , vol.32 , pp. 1019-1025
    • De Vree, P.J.1
  • 31
    • 84890034912 scopus 로고    scopus 로고
    • Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions
    • Burton J. N, et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119-1125 (2013).
    • (2013) Nat. Biotechnol , vol.31 , pp. 1119-1125
    • Burton, J.N.1
  • 32
    • 84890032321 scopus 로고    scopus 로고
    • High-Throughput genome scaffolding from in vivo DNA interaction frequency
    • Kaplan N, & Dekker J. High-Throughput genome scaffolding from in vivo DNA interaction frequency. Nat. Biotechnol. 31, 1143-1147 (2013).
    • (2013) Nat. Biotechnol , vol.31 , pp. 1143-1147
    • Kaplan, N.1    Dekker, J.2
  • 33
    • 84922698599 scopus 로고    scopus 로고
    • High-quality genome (re)assembly using chromosomal contact data
    • Marie-Nelly H, et al. High-quality genome (re)assembly using chromosomal contact data. Nat. Commun. 5, 5695 (2014).
    • (2014) Nat. Commun , vol.5 , pp. 5695
    • Marie-Nelly, H.1
  • 34
    • 84903835646 scopus 로고    scopus 로고
    • Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products
    • Beitel C. W, et al. Strain- And plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products. PeerJ 2, e415 (2014).
    • (2014) PeerJ , vol.2 , pp. e415
    • Beitel, C.W.1
  • 35
    • 84904548768 scopus 로고    scopus 로고
    • Species-level deconvolution of metagenome assemblies with Hi C based contact probability maps
    • Burton J. N, Liachko I, Dunham M. J, & Shendure J. Species-level deconvolution of metagenome assemblies with Hi C based contact probability maps. G3 (Bethesda) 4, 1339-1346 (2014).
    • (2014) G3 (Bethesda , vol.4 , pp. 1339-1346
    • Burton, J.N.1    Liachko, I.2    Dunham, M.J.3    Shendure, J.4
  • 36
    • 84938287195 scopus 로고    scopus 로고
    • Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms
    • Marbouty M, et al. Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms. eLife 3, e03318 (2014).
    • (2014) ELife , vol.3 , pp. e03318
    • Marbouty, M.1
  • 37
    • 77952744854 scopus 로고    scopus 로고
    • A three-dimensional model of the yeast genome
    • Duan Z, et al. A three-dimensional model of the yeast genome. Nature 465 363-367 (2010).
    • (2010) Nature , vol.465 , pp. 363-367
    • Duan, Z.1
  • 38
    • 84885617426 scopus 로고    scopus 로고
    • Single-cell Hi C reveals cell to cell variability in chromosome structure
    • Nagano T, et al. Single-cell Hi C reveals cell to cell variability in chromosome structure. Nature 502, 59-64 (2013).
    • (2013) Nature , vol.502 , pp. 59-64
    • Nagano, T.1
  • 39
    • 84929508843 scopus 로고    scopus 로고
    • Haplotype-resolved genome sequencing: Experimental methods and applications
    • Snyder M. W, Adey A, Kitzman J. O, & Shendure J. Haplotype-resolved genome sequencing: experimental methods and applications. Nat. Rev. Genet. 16, 344-358 (2015).
    • (2015) Nat. Rev. Genet , vol.16 , pp. 344-358
    • Snyder, M.W.1    Adey, A.2    Kitzman, J.O.3    Shendure, J.4
  • 40
    • 84943361976 scopus 로고    scopus 로고
    • Contact genomics: Scaffolding and phasing (meta)genomes using chromosome 3D physical signatures
    • Flot J. F, Marie-Nelly H, & Koszul R. Contact genomics: scaffolding and phasing (meta)genomes using chromosome 3D physical signatures. FEBS Lett. 589, 2966-2974 (2015).
    • (2015) FEBS Lett , vol.589 , pp. 2966-2974
    • Flot, J.F.1    Marie-Nelly, H.2    Koszul, R.3
  • 41
    • 84943198135 scopus 로고    scopus 로고
    • Modeling chromosomes: Beyond pretty pictures
    • Imakaev M. V, Fudenberg G, & Mirny L. A. Modeling chromosomes: beyond pretty pictures. FEBS Lett. 589, 3031-3036 (2015).
    • (2015) FEBS Lett , vol.589 , pp. 3031-3036
    • Imakaev, M.V.1    Fudenberg, G.2    Mirny, L.A.3
  • 42
    • 84943197698 scopus 로고    scopus 로고
    • Restraint-based three-dimensional modeling of genomes and genomic domains
    • Serra F, et al. Restraint-based three-dimensional modeling of genomes and genomic domains. FEBS Lett. 589, 2987-2995 (2015).
    • (2015) FEBS Lett , vol.589 , pp. 2987-2995
    • Serra, F.1
  • 44
    • 0027248178 scopus 로고
    • Interaction between transcription regulatory regions of prolactin chromatin
    • Cullen K. E, Kladde M. P, & Seyfred M. A. Interaction between transcription regulatory regions of prolactin chromatin. Science 261, 203-206 (1993).
    • (1993) Science , vol.261 , pp. 203-206
    • Cullen, K.E.1    Kladde, M.P.2    Seyfred, M.A.3
  • 45
    • 33750203582 scopus 로고    scopus 로고
    • Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions
    • Zhao Z, et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- And interchromosomal interactions. Nat. Genet. 38, 1341-1347 (2006).
    • (2006) Nat. Genet , vol.38 , pp. 1341-1347
    • Zhao, Z.1
  • 46
    • 84867003195 scopus 로고    scopus 로고
    • Robust 4C seq data analysis to screen for regulatory DNA interactions
    • van de Werken H. J, et al. Robust 4C seq data analysis to screen for regulatory DNA interactions. Nat. Methods 9, 969-972 (2012).
    • (2012) Nat. Methods , vol.9 , pp. 969-972
    • Van De Werken, H.J.1
  • 47
    • 84856747483 scopus 로고    scopus 로고
    • Three-dimensional folding and functional organization principles of the Drosophila genome
    • Sexton T, et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458-472 (2012).
    • (2012) Cell , vol.148 , pp. 458-472
    • Sexton, T.1
  • 48
    • 84939483651 scopus 로고    scopus 로고
    • Bipartite structure of the inactive mouse X chromosome
    • Deng X, et al. Bipartite structure of the inactive mouse X chromosome. Genome Biol. 16, 152 (2015).
    • (2015) Genome Biol , vol.16 , pp. 152
    • Deng, X.1
  • 49
    • 84926177361 scopus 로고    scopus 로고
    • Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes
    • Ma W, et al. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes. Nat. Methods 12, 71-78 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 71-78
    • Ma, W.1
  • 50
    • 84934435162 scopus 로고    scopus 로고
    • Mapping nucleosome resolution chromosome folding in yeast by micro C
    • Hsieh T. H, et al. Mapping nucleosome resolution chromosome folding in yeast by micro C. Cell 162, 108-119 (2015).
    • (2015) Cell , vol.162 , pp. 108-119
    • Hsieh, T.H.1
  • 51
    • 33750212321 scopus 로고    scopus 로고
    • Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on chip (4C
    • Simonis M, et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on chip (4C). Nat. Genet. 38, 1348-1354 (2006).
    • (2006) Nat. Genet , vol.38 , pp. 1348-1354
    • Simonis, M.1
  • 52
    • 33749400168 scopus 로고    scopus 로고
    • Chromosome conformation capture carbon copy (5C): A massively parallel solution for mapping interactions between genomic elements
    • Dostie J, et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299-1309 (2006).
    • (2006) Genome Res , vol.16 , pp. 1299-1309
    • Dostie, J.1
  • 53
    • 84948686586 scopus 로고    scopus 로고
    • Capture Hi C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci
    • Martin P, et al. Capture Hi C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci. Nat. Commun. 6, 10069 (2015).
    • (2015) Nat. Commun , vol.6 , pp. 10069
    • Martin, P.1
  • 54
    • 84930092058 scopus 로고    scopus 로고
    • Mapping long-range promoter contacts in human cells with high-resolution capture Hi C
    • Mifsud B, et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi C. Nat. Genet. 47, 598-606 (2015).
    • (2015) Nat. Genet , vol.47 , pp. 598-606
    • Mifsud, B.1
  • 55
    • 84940034154 scopus 로고    scopus 로고
    • Genome-wide mapping of promoter-Anchored interactions with close to single-enhancer resolution
    • Sahlen P, et al. Genome-wide mapping of promoter-Anchored interactions with close to single-enhancer resolution. Genome Biol. 16, 156 (2015).
    • (2015) Genome Biol , vol.16 , pp. 156
    • Sahlen, P.1
  • 56
    • 84927763931 scopus 로고    scopus 로고
    • The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements
    • Schoenfelder S, et al. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements. Genome Res. 25, 582-597 (2015).
    • (2015) Genome Res , vol.25 , pp. 582-597
    • Schoenfelder, S.1
  • 57
    • 84942852834 scopus 로고    scopus 로고
    • Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome
    • Schoenfelder S, et al. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat. Genet. 47, 1179-1186 (2015).
    • (2015) Nat. Genet , vol.47 , pp. 1179-1186
    • Schoenfelder, S.1
  • 58
    • 84923823453 scopus 로고    scopus 로고
    • Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi C
    • Dryden N. H, et al. Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi C. Genome Res. 24, 1854-1868 (2014).
    • (2014) Genome Res , vol.24 , pp. 1854-1868
    • Dryden, N.H.1
  • 59
    • 84923378921 scopus 로고    scopus 로고
    • Capture Hi C identifies the chromatin interactome of colorectal cancer risk loci
    • Jager R, et al. Capture Hi C identifies the chromatin interactome of colorectal cancer risk loci. Nat. Commun. 6, 6178 (2015).
    • (2015) Nat. Commun , vol.6 , pp. 6178
    • Jager, R.1
  • 60
    • 84948403758 scopus 로고    scopus 로고
    • Chromatin extrusion explains key features of loop and domain formation in wild-Type and engineered genomes
    • Sanborn A. L, et al. Chromatin extrusion explains key features of loop and domain formation in wild-Type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456-E6465 (2015).
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. E6456-E6465
    • Sanborn, A.L.1
  • 61
    • 84928929909 scopus 로고    scopus 로고
    • Sequencing small genomic targets with high efficiency and extreme accuracy
    • Schmitt M. W, et al. Sequencing small genomic targets with high efficiency and extreme accuracy. Nat. Methods 12, 423-425 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 423-425
    • Schmitt, M.W.1
  • 62
    • 84923366733 scopus 로고    scopus 로고
    • Chromatin architecture reorganization during stem cell differentiation
    • Dixon J. R, et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331-336 (2015).
    • (2015) Nature , vol.518 , pp. 331-336
    • Dixon, J.R.1
  • 63
    • 84956604089 scopus 로고    scopus 로고
    • Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation
    • Fraser J, et al. Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation. Mol. Syst. Biol. 11, 852 (2015).
    • (2015) Mol. Syst. Biol , vol.11 , pp. 852
    • Fraser, J.1
  • 64
    • 84923333199 scopus 로고    scopus 로고
    • Integrative analysis of haplotype-resolved epigenomes across human tissues
    • Leung D, et al. Integrative analysis of haplotype-resolved epigenomes across human tissues. Nature 518, 350-354 (2015).
    • (2015) Nature , vol.518 , pp. 350-354
    • Leung, D.1
  • 65
    • 84940023613 scopus 로고    scopus 로고
    • Comparison of Hi C results using in solution versus in nucleus ligation
    • Nagano T, et al. Comparison of Hi C results using in solution versus in nucleus ligation. Genome Biol. 16, 175 (2015).
    • (2015) Genome Biol , vol.16 , pp. 175
    • Nagano, T.1
  • 66
    • 84890504911 scopus 로고    scopus 로고
    • Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments
    • Seitan V. C, et al. Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments. Genome Res. 23, 2066-2077 (2013).
    • (2013) Genome Res , vol.23 , pp. 2066-2077
    • Seitan, V.C.1
  • 67
    • 84890566970 scopus 로고    scopus 로고
    • Cohesin-mediated interactions organize chromosomal domain architecture
    • Sofueva S, et al. Cohesin-mediated interactions organize chromosomal domain architecture. EMBO J. 32, 3119-3129 (2013).
    • (2013) EMBO J. , vol.32 , pp. 3119-3129
    • Sofueva, S.1
  • 68
    • 84892934183 scopus 로고    scopus 로고
    • Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells
    • Zuin J, et al. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc. Natl Acad. Sci. USA 111, 996-1001 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 996-1001
    • Zuin, J.1
  • 69
    • 84870379849 scopus 로고    scopus 로고
    • Hi C: A comprehensive technique to capture the conformation of genomes
    • Belton J. M, et al. Hi C: a comprehensive technique to capture the conformation of genomes. Methods 58, 268-276 (2012).
    • (2012) Methods , vol.58 , pp. 268-276
    • Belton, J.M.1
  • 70
    • 80055118988 scopus 로고    scopus 로고
    • Hi C: A method to study the three-dimensional architecture of genomes
    • van Berkum N. L, et al. Hi C: a method to study the three-dimensional architecture of genomes. J. Vis. Exp. 39, 1869 (2010).
    • (2010) J. Vis. Exp , vol.39 , pp. 1869
    • Van Berkum, N.L.1
  • 71
    • 79952294070 scopus 로고    scopus 로고
    • A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber
    • Comet I, Schuettengruber B, Sexton T, & Cavalli G. A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber. Proc. Natl Acad. Sci. USA 108, 2294-2299 (2011).
    • (2011) Proc Natl Acad. Sci. USA , vol.108 , pp. 2294-2299
    • Comet, I.1    Schuettengruber, B.2    Sexton, T.3    Cavalli, G.4
  • 72
    • 84865502890 scopus 로고    scopus 로고
    • 4C technology: Protocols and data analysis
    • van de Werken H. J, et al. 4C technology: protocols and data analysis. Methods Enzymol. 513, 89-112 (2012).
    • (2012) Methods Enzymol , vol.513 , pp. 89-112
    • Van De Werken, H.J.1
  • 73
    • 78649773164 scopus 로고    scopus 로고
    • Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition
    • Adey A, et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol. 11, R119 (2010).
    • (2010) Genome Biol , vol.11 , pp. R119
    • Adey, A.1
  • 74
    • 84864844206 scopus 로고    scopus 로고
    • Anterior-posterior differences in HoxD chromatin topology in limb development
    • Williamson I, et al. Anterior-posterior differences in HoxD chromatin topology in limb development. Development 139, 3157-3167 (2012).
    • (2012) Development , vol.139 , pp. 3157-3167
    • Williamson, I.1
  • 75
    • 84884294269 scopus 로고    scopus 로고
    • The spatial organization of the human genome
    • Bickmore W. A. The spatial organization of the human genome. Annu. Rev. Genomics Hum. Genet. 14, 67-84 (2013).
    • (2013) Annu. Rev. Genomics Hum. Genet , vol.14 , pp. 67-84
    • Bickmore, W.A.1
  • 76
    • 84918510740 scopus 로고    scopus 로고
    • Spatial genome organization: Contrasting views from chromosome conformation capture and fluorescence in situ hybridization
    • Williamson I, et al. Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev. 28, 2778-2791 (2014).
    • (2014) Genes Dev , vol.28 , pp. 2778-2791
    • Williamson, I.1
  • 77
    • 80054984337 scopus 로고    scopus 로고
    • Probabilistic modeling of Hi C contact maps eliminates systematic biases to characterize global chromosomal architecture
    • Yaffe E, & Tanay A. Probabilistic modeling of Hi C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat. Genet. 43, 1059-1065 (2011).
    • (2011) Nat. Genet , vol.43 , pp. 1059-1065
    • Yaffe, E.1    Tanay, A.2
  • 78
    • 84870463249 scopus 로고    scopus 로고
    • HiCNorm: Removing biases in Hi C data via Poisson regression
    • Hu M, et al. HiCNorm: removing biases in Hi C data via Poisson regression. Bioinformatics 28, 3131-3133 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 3131-3133
    • Hu, M.1
  • 79
    • 84866997011 scopus 로고    scopus 로고
    • Iterative correction of Hi C data reveals hallmarks of chromosome organization
    • Imakaev M, et al. Iterative correction of Hi C data reveals hallmarks of chromosome organization. Nat. Methods 9, 999-1003 (2012).
    • (2012) Nat. Methods , vol.9 , pp. 999-1003
    • Imakaev, M.1
  • 80
    • 84952861819 scopus 로고    scopus 로고
    • HiC-Pro: An optimized and flexible pipeline for Hi C data processing
    • Servant N, et al. HiC-Pro: an optimized and flexible pipeline for Hi C data processing. Genome Biol. 16, 259 (2015).
    • (2015) Genome Biol , vol.16 , pp. 259
    • Servant, N.1
  • 81
    • 84925273803 scopus 로고    scopus 로고
    • Hi Corrector: A fast, scalable and memory-efficient package for normalizing large-scale Hi C data
    • Li W, Gong K, Li Q, Alber F, & Zhou X. J. Hi Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi C data. Bioinformatics 31, 960-962 (2015).
    • (2015) Bioinformatics , vol.31 , pp. 960-962
    • Li, W.1    Gong, K.2    Li, Q.3    Alber, F.4    Zhou, X.J.5
  • 82
    • 84972533495 scopus 로고
    • Concerning nonnegative matrices and doubly stochastic matrices
    • Knopp P, & Sinkhorn R. Concerning nonnegative matrices and doubly stochastic matrices. Pacif. J. Math. 21, 343-348 (1967).
    • (1967) Pacif. J. Math , vol.21 , pp. 343-348
    • Knopp, P.1    Sinkhorn, R.2
  • 83
    • 84880302753 scopus 로고    scopus 로고
    • A fast algorithm for matrix balancing
    • Knight P. A, & Ruiz D. A fast algorithm for matrix balancing. IMA J. Numer. Analysis 33, 1029-1047 (2012).
    • (2012) IMA J Numer. Analysis , vol.33 , pp. 1029-1047
    • Knight, P.A.1    Ruiz, D.2
  • 84
    • 84900306385 scopus 로고    scopus 로고
    • Combining a wavelet change point and the Bayes factor for analysing chromosomal interaction data
    • Shavit Y, & Lio P. Combining a wavelet change point and the Bayes factor for analysing chromosomal interaction data. Mol. Biosyst. 10, 1576-1585 (2014).
    • (2014) Mol. Biosyst , vol.10 , pp. 1576-1585
    • Shavit, Y.1    Lio, P.2
  • 85
    • 84974539482 scopus 로고    scopus 로고
    • Chicago: Robust detection of DNA looping interactions in capture hi c data
    • Cairns J, et al. CHiCAGO: robust detection of DNA looping interactions in capture Hi C data. Genome Biol. 17, 127 (2015).
    • (2015) Genome Biol , vol.17 , pp. 127
    • Cairns, J.1
  • 87
    • 84943358862 scopus 로고    scopus 로고
    • Structural and functional diversity of topologically associating domains
    • Dekker J, & Heard E. Structural and functional diversity of topologically associating domains. FEBS Lett. 589, 2877-2884 (2015).
    • (2015) FEBS Lett , vol.589 , pp. 2877-2884
    • Dekker, J.1    Heard, E.2
  • 90
    • 84936945257 scopus 로고    scopus 로고
    • Condensin-driven remodelling of X chromosome topology during dosage compensation
    • Crane E, et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523, 240-244 (2015).
    • (2015) Nature , vol.523 , pp. 240-244
    • Crane, E.1
  • 91
    • 84901838628 scopus 로고    scopus 로고
    • Statistical confidence estimation for Hi C data reveals regulatory chromatin contacts
    • Ay F, Bailey T. L, & Noble W. S. Statistical confidence estimation for Hi C data reveals regulatory chromatin contacts. Genome Res. 24, 999-1011 (2014).
    • (2014) Genome Res , vol.24 , pp. 999-1011
    • Ay, F.1    Bailey, T.L.2    Noble, W.S.3
  • 92
    • 84947507957 scopus 로고    scopus 로고
    • GOTHiC, a simple probabilistic model to resolve complex biases and to identify real interactions in Hi C data
    • Mifsud B, et al. GOTHiC, a simple probabilistic model to resolve complex biases and to identify real interactions in Hi C data. Preprint at bioRxiv http://dx.doi.org/10.1101/023317 (2015).
    • (2015) Preprint at BioRxiv
    • Mifsud, B.1
  • 93
    • 84960114991 scopus 로고    scopus 로고
    • A hidden Markov random field based Bayesian method for the detection of long-range chromosomal intereactions in Hi C data
    • Xu Z, et al. A hidden Markov random field based Bayesian method for the detection of long-range chromosomal intereactions in Hi C data. Bioinformatics 32, 650-656 (2015).
    • (2015) Bioinformatics , vol.32 , pp. 650-656
    • Xu, Z.1
  • 94
    • 84939489655 scopus 로고    scopus 로고
    • DiffHic: A bioconductor package to detect differential genomic interactions in Hi C data
    • Lun A. T, & Smyth G. K. diffHic: a bioconductor package to detect differential genomic interactions in Hi C data. BMC Bioinformatics 16, 258 (2015).
    • (2015) BMC Bioinformatics , vol.16 , pp. 258
    • Lun, A.T.1    Smyth, G.K.2
  • 95
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson M. D, McCarthy D. J, & Smyth G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140 (2010).
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 96
    • 84947906613 scopus 로고    scopus 로고
    • Single-cell Hi C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell
    • Nagano T, et al. Single-cell Hi C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell. Nat. Protoc. 10, 1986-2003 (2015).
    • (2015) Nat. Protoc , vol.10 , pp. 1986-2003
    • Nagano, T.1
  • 97
    • 31344477982 scopus 로고    scopus 로고
    • The three C s of chromosome conformation capture: Controls, controls, controls
    • Dekker J. The three C s of chromosome conformation capture: controls, controls, controls. Nat. Methods 3, 17-21 (2006).
    • (2006) Nat. Methods , vol.3 , pp. 17-21
    • Dekker, J.1
  • 98
    • 34548565667 scopus 로고    scopus 로고
    • Quantitative analysis of chromosome conformation capture assays (3C qPCR
    • Hagege H, et al. Quantitative analysis of chromosome conformation capture assays (3C qPCR). Nat. Protoc. 2, 1722-1733 (2007).
    • (2007) Nat. Protoc , vol.2 , pp. 1722-1733
    • Hagege, H.1
  • 99
    • 68449092480 scopus 로고    scopus 로고
    • Studying physical chromatin interactions in plants using chromosome conformation capture (3C
    • Louwers M, Splinter E, van Driel R, de Laat W, & Stam M. Studying physical chromatin interactions in plants using chromosome conformation capture (3C). Nat. Protoc. 4, 1216-1229 (2009).
    • (2009) Nat. Protoc , vol.4 , pp. 1216-1229
    • Louwers, M.1    Splinter, E.2    Van Driel, R.3    De Laat, W.4    Stam, M.5
  • 100
    • 84870344301 scopus 로고    scopus 로고
    • Analysis of long-range chromatin interactions using chromosome conformation capture
    • Naumova N, Smith E. M, Zhan Y, & Dekker J. Analysis of long-range chromatin interactions using chromosome conformation capture. Methods 58, 192-203 (2012).
    • (2012) Methods , vol.58 , pp. 192-203
    • Naumova, N.1    Smith, E.M.2    Zhan, Y.3    Dekker, J.4
  • 101
    • 80755180849 scopus 로고    scopus 로고
    • The DNA-binding protein CTCF limits proximal V? Recombination and restricts? Enhancer interactions to the immunoglobulin? Light chain locus
    • Ribeiro de Almeida C, et al. The DNA-binding protein CTCF limits proximal V? recombination and restricts ? enhancer interactions to the immunoglobulin ? light chain locus. Immunity 35, 501-513 (2011).
    • (2011) Immunity , vol.35 , pp. 501-513
    • Ribeiro De Almeida, C.1
  • 102
    • 84875143934 scopus 로고    scopus 로고
    • Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions
    • Sqtadhouders R, et al. Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions. Nat. Protoc. 8, 509-524 (2013).
    • (2013) Nat. Protoc , vol.8 , pp. 509-524
    • Stadhouders, R.1
  • 103
    • 33745743206 scopus 로고    scopus 로고
    • Genome-wide scanning of HoxB1 associated loci in mouse ES cells using an open-ended chromosome conformation capture methodology
    • Wurtele H, & Chartrand P. Genome-wide scanning of HoxB1 associated loci in mouse ES cells using an open-ended chromosome conformation capture methodology. Chromosome Res. 14, 477-495 (2006).
    • (2006) Chromosome Res , vol.14 , pp. 477-495
    • Wurtele, H.1    Chartrand, P.2
  • 104
    • 79951473520 scopus 로고    scopus 로고
    • 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response
    • Harismendy O, et al. 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature 470 264-268 (2011).
    • (2011) Nature , vol.470 , pp. 264-268
    • Harismendy, O.1
  • 105
    • 39449139894 scopus 로고    scopus 로고
    • High-resolution circular chromosome conformation capture assay
    • Gondor A, Rougier C, & Ohlsson R. High-resolution circular chromosome conformation capture assay. Nat. Protoc. 3, 303-313 (2008).
    • (2008) Nat. Protoc , vol.3 , pp. 303-313
    • Gondor, A.1    Rougier, C.2    Ohlsson, R.3
  • 106
    • 79959952919 scopus 로고    scopus 로고
    • The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA
    • Splinter E, et al. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev. 25, 1371-1383 (2011).
    • (2011) Genes Dev , vol.25 , pp. 1371-1383
    • Splinter, E.1
  • 107
    • 80555154012 scopus 로고    scopus 로고
    • Detecting long-range chromatin interactions using the chromosome conformation capture sequencing (4C seq) method
    • Gheldof N, Leleu M, Noordermeer D, Rougemont J, & Reymond A. Detecting long-range chromatin interactions using the chromosome conformation capture sequencing (4C seq) method. Methods Mol. Biol. 786, 211-225 (2012).
    • (2012) Methods Mol. Biol , vol.786 , pp. 211-225
    • Gheldof, N.1    Leleu, M.2    Noordermeer, D.3    Rougemont, J.4    Reymond, A.5
  • 108
    • 84870310006 scopus 로고    scopus 로고
    • Determining long-range chromatin interactions for selected genomic sites using 4C seq technology: From fixation to computation
    • Splinter E, de Wit E, van de Werken H. J, Klous P, & de Laat W. Determining long-range chromatin interactions for selected genomic sites using 4C seq technology: from fixation to computation. Methods 58, 221-230 (2012).
    • (2012) Methods , vol.58 , pp. 221-230
    • Splinter, E.1    De Wit, E.2    Van De Werken, H.J.3    Klous, P.4    De Laat, W.5
  • 109
    • 73349090560 scopus 로고    scopus 로고
    • Preferential associations between co regulated genes reveal a transcriptional interactome in erythroid cells
    • Schoenfelder S, et al. Preferential associations between co regulated genes reveal a transcriptional interactome in erythroid cells. Nat. Genet. 42, 53-61 (2010).
    • (2010) Nat. Genet , vol.42 , pp. 53-61
    • Schoenfelder, S.1
  • 110
    • 84866786102 scopus 로고    scopus 로고
    • Sensitive detection of chromatin coassociations using enhanced chromosome conformation capture on chip
    • Sexton T, et al. Sensitive detection of chromatin coassociations using enhanced chromosome conformation capture on chip. Nat. Protoc. 7, 1335-1350 (2012).
    • (2012) Nat. Protoc , vol.7 , pp. 1335-1350
    • Sexton, T.1
  • 111
    • 33645814398 scopus 로고    scopus 로고
    • CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1
    • Ling J. Q, et al. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312, 269-272 (2006).
    • (2006) Science , vol.312 , pp. 269-272
    • Ling, J.Q.1
  • 112
    • 80355130040 scopus 로고    scopus 로고
    • Associated chromosome trap for identifying long-range DNA interactions
    • Ling J, & Hoffman A. R. Associated chromosome trap for identifying long-range DNA interactions. J. Vis. Exp. 50, 2621 (2011).
    • (2011) J. Vis. Exp , vol.50 , pp. 2621
    • Ling, J.1    Hoffman, A.R.2
  • 113
    • 40349098663 scopus 로고    scopus 로고
    • Chromosome conformation capture carbon copy technology
    • Dostie J, Zhan Y, & Dekker J. Chromosome conformation capture carbon copy technology. Curr. Protoc. Mol. Biol. http://dx.doi.org/10.1002/.0471142727.mb2114s80 (2007).
    • (2007) Curr. Protoc. Mol. Biol
    • Dostie, J.1    Zhan, Y.2    Dekker, J.3
  • 114
    • 84870310396 scopus 로고    scopus 로고
    • From cells to chromatin: Capturing snapshots of genome organization with 5C technology
    • Ferraiuolo M. A, Sanyal A, Naumova N, Dekker J, & Dostie J. From cells to chromatin: capturing snapshots of genome organization with 5C technology. Methods 58, 255-267 (2012).
    • (2012) Methods , vol.58 , pp. 255-267
    • Ferraiuolo, M.A.1    Sanyal, A.2    Naumova, N.3    Dekker, J.4    Dostie, J.5
  • 115
    • 84865503094 scopus 로고    scopus 로고
    • Torrent of data: Mapping chromatin organization using 5C and high-Throughput sequencing
    • Fraser J, Ethier S. D, Miura H, & Dostie J. A. Torrent of data: mapping chromatin organization using 5C and high-Throughput sequencing. Methods Enzymol. 513, 113-141 (2012).
    • (2012) Methods Enzymol , vol.513 , pp. 113-141
    • Fraser, J.1    Ethier, S.D.2    Miura, H.3    Dostie, J.A.4
  • 116
    • 84870330993 scopus 로고    scopus 로고
    • Chromosome conformation capture assays in bacteria
    • Umbarger M. A. Chromosome conformation capture assays in bacteria. Methods 58, 212-220 (2012).
    • (2012) Methods , vol.58 , pp. 212-220
    • Umbarger, M.A.1
  • 117
    • 70149094741 scopus 로고    scopus 로고
    • Global identification of yeast chromosome interactions using genome conformation capture
    • Rodley C. D, Bertels F, Jones B, & O'Sullivan J. M. Global identification of yeast chromosome interactions using genome conformation capture. Fungal Genet. Biol. 46, 879-886 (2009).
    • (2009) Fungal Genet. Biol , vol.46 , pp. 879-886
    • Rodley, C.D.1    Bertels, F.2    Jones, B.3    O'Sullivan, J.M.4
  • 118
    • 84870331824 scopus 로고    scopus 로고
    • A genome-wide 3C method for characterizing the three-dimensional architectures of genomes
    • Duan Z, et al. A genome-wide 3C method for characterizing the three-dimensional architectures of genomes. Methods 58 277-288 (2012).
    • (2012) Methods , vol.58 , pp. 277-288
    • Duan, Z.1
  • 119
    • 78650458168 scopus 로고    scopus 로고
    • Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation
    • Tanizawa H, et al. Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. Nucleic Acids Res. 38, 8164-8177 (2010).
    • (2010) Nucleic Acids Res , vol.38 , pp. 8164-8177
    • Tanizawa, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.