-
1
-
-
79957652421
-
Bone regeneration: current concepts and future directions
-
[1] Dimitriou, R., Jones, E., McGonagle, D., Giannoudis, P.V., Bone regeneration: current concepts and future directions. BMC Med., 9, 2011, 66.
-
(2011)
BMC Med.
, vol.9
, pp. 66
-
-
Dimitriou, R.1
Jones, E.2
McGonagle, D.3
Giannoudis, P.V.4
-
2
-
-
84992447299
-
Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants
-
[2] Raphel, J., Holodniy, M., Goodman, S.B., Heilshorn, S.C., Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials 84 (2016), 301–314.
-
(2016)
Biomaterials
, vol.84
, pp. 301-314
-
-
Raphel, J.1
Holodniy, M.2
Goodman, S.B.3
Heilshorn, S.C.4
-
3
-
-
77649269327
-
Progress in tissue engineering and regenerative medicine
-
[3] Badylak, S.F., Nerem, R.M., Progress in tissue engineering and regenerative medicine. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 3285–3286.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 3285-3286
-
-
Badylak, S.F.1
Nerem, R.M.2
-
4
-
-
84958064047
-
Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration
-
[4] Tang, D., Tare, R.S., Yang, L.Y., Williams, D.F., Ou, K.L., Oreffo, R.O.C., Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 83 (2016), 363–382.
-
(2016)
Biomaterials
, vol.83
, pp. 363-382
-
-
Tang, D.1
Tare, R.S.2
Yang, L.Y.3
Williams, D.F.4
Ou, K.L.5
Oreffo, R.O.C.6
-
5
-
-
84957010964
-
Importance of dual delivery systems for bone tissue engineering
-
[5] Farokhi, M., Mottaghitalab, F., Shokrgozar, M.A., Ou, K.L., Mao, C., Hosseinkhani, H., Importance of dual delivery systems for bone tissue engineering. J. Control. Release 225 (2016), 152–169.
-
(2016)
J. Control. Release
, vol.225
, pp. 152-169
-
-
Farokhi, M.1
Mottaghitalab, F.2
Shokrgozar, M.A.3
Ou, K.L.4
Mao, C.5
Hosseinkhani, H.6
-
6
-
-
70249150737
-
Perspectives and challenges in tissue engineering and regenerative medicine
-
[6] Langer, R., Perspectives and challenges in tissue engineering and regenerative medicine. Adv. Mater. 21 (2009), 3235–3236.
-
(2009)
Adv. Mater.
, vol.21
, pp. 3235-3236
-
-
Langer, R.1
-
7
-
-
76949107913
-
Responsive and in situ-forming chitosan scaffolds for bone tissue engineering applications: an overview of the last decade
-
[7] Martins, A.M., Alves, C.M., Kasper, F.K., Mikos, A.G., Reis, R.L., Responsive and in situ-forming chitosan scaffolds for bone tissue engineering applications: an overview of the last decade. J. Mater. Chem. 20 (2010), 1638–1645.
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 1638-1645
-
-
Martins, A.M.1
Alves, C.M.2
Kasper, F.K.3
Mikos, A.G.4
Reis, R.L.5
-
8
-
-
84896567022
-
In situ tissue regeneration through host stem cell recruitment
-
[8] Ko, I.K., Lee, S.J., Atala, A., Yoo, J.J., In situ tissue regeneration through host stem cell recruitment. Exp. Mol. Med., 45, 2013, e57.
-
(2013)
Exp. Mol. Med.
, vol.45
, pp. e57
-
-
Ko, I.K.1
Lee, S.J.2
Atala, A.3
Yoo, J.J.4
-
9
-
-
84947713190
-
Biomaterials for in situ tissue regeneration: development and perspectives
-
[9] Li, Q., Ma, L., Gao, C., Biomaterials for in situ tissue regeneration: development and perspectives. J. Mater. Chem. B 3 (2015), 8921–8938.
-
(2015)
J. Mater. Chem. B
, vol.3
, pp. 8921-8938
-
-
Li, Q.1
Ma, L.2
Gao, C.3
-
10
-
-
84939247380
-
Silk as a potential candidate for bone tissue engineering
-
[10] Mottaghitalab, F., Hosseinkhani, H., Shokrgozar, M.A., Mao, C., Yang, M., Farokhi, M., Silk as a potential candidate for bone tissue engineering. J. Control. Release 215 (2015), 112–128.
-
(2015)
J. Control. Release
, vol.215
, pp. 112-128
-
-
Mottaghitalab, F.1
Hosseinkhani, H.2
Shokrgozar, M.A.3
Mao, C.4
Yang, M.5
Farokhi, M.6
-
11
-
-
84957442661
-
Silk fibroin as biomaterial for bone tissue engineering
-
[11] Melke, J., Midha, S., Ghosh, S., Ito, K., Hofmann, S., Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater. 31 (2016), 1–16.
-
(2016)
Acta Biomater.
, vol.31
, pp. 1-16
-
-
Melke, J.1
Midha, S.2
Ghosh, S.3
Ito, K.4
Hofmann, S.5
-
12
-
-
79957679446
-
Nanoscale hydroxyapatite particles for bone tissue engineering
-
[12] Zhou, H., Lee, J., Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 7 (2011), 2769–2781.
-
(2011)
Acta Biomater.
, vol.7
, pp. 2769-2781
-
-
Zhou, H.1
Lee, J.2
-
13
-
-
84924522534
-
Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop
-
[13] Liu, H., Xu, G.W., Wang, Y.F., Zhao, H.S., Xiong, S., Wu, Y., et al. Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop. Biomaterials 49 (2015), 103–112.
-
(2015)
Biomaterials
, vol.49
, pp. 103-112
-
-
Liu, H.1
Xu, G.W.2
Wang, Y.F.3
Zhao, H.S.4
Xiong, S.5
Wu, Y.6
-
14
-
-
77953536520
-
Stromal derived factor-1 regulates bone morphogenetic protein 2-induced osteogenic differentiation of primary mesenchymal stem cells
-
[14] Hosogane, N., Huang, Z., Rawlins, B.A., Liu, X., Boachie-Adjei, O., Boskey, A.L., et al. Stromal derived factor-1 regulates bone morphogenetic protein 2-induced osteogenic differentiation of primary mesenchymal stem cells. Int. J. Biochem. Cell. Biol. 42 (2010), 1132–1141.
-
(2010)
Int. J. Biochem. Cell. Biol.
, vol.42
, pp. 1132-1141
-
-
Hosogane, N.1
Huang, Z.2
Rawlins, B.A.3
Liu, X.4
Boachie-Adjei, O.5
Boskey, A.L.6
-
15
-
-
84868500032
-
Incorporation of stromal cell-derived factor-1 alpha in PCL/gelatin electrospun membranes for guided bone regeneration
-
[15] Ji, W., Yang, F., Ma, J., Bouma, M.J., Boerman, O.C., Chen, Z., et al. Incorporation of stromal cell-derived factor-1 alpha in PCL/gelatin electrospun membranes for guided bone regeneration. Biomaterials 34 (2013), 735–745.
-
(2013)
Biomaterials
, vol.34
, pp. 735-745
-
-
Ji, W.1
Yang, F.2
Ma, J.3
Bouma, M.J.4
Boerman, O.C.5
Chen, Z.6
-
16
-
-
77950814576
-
Controlled release of bone morphogenetic protein-2 enhances recruitment of osteogenic progenitor cells for de novo generation of bone tissue
-
[16] Kimura, Y., Miyazaki, N., Hayashi, N., Otsuru, S., Tamai, K., Kaneda, Y., et al. Controlled release of bone morphogenetic protein-2 enhances recruitment of osteogenic progenitor cells for de novo generation of bone tissue. Tissue Eng. Part A 16 (2010), 1263–1270.
-
(2010)
Tissue Eng. Part A
, vol.16
, pp. 1263-1270
-
-
Kimura, Y.1
Miyazaki, N.2
Hayashi, N.3
Otsuru, S.4
Tamai, K.5
Kaneda, Y.6
-
17
-
-
84870796456
-
Bone regeneration with BMP-2 delivered from keratose scaffolds
-
[17] de Guzman, R.C., Saul, J.M., Ellenburg, M.D., Merrill, M.R., Coan, H.B., Smith, T.L., et al. Bone regeneration with BMP-2 delivered from keratose scaffolds. Biomaterials 34 (2013), 1644–1656.
-
(2013)
Biomaterials
, vol.34
, pp. 1644-1656
-
-
de Guzman, R.C.1
Saul, J.M.2
Ellenburg, M.D.3
Merrill, M.R.4
Coan, H.B.5
Smith, T.L.6
-
18
-
-
84912055096
-
Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo
-
[18] Suliman, S., Xing, Z., Wu, X., Xue, Y., Pedersen, T.O., Sun, Y., et al. Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo. J. Control. Release 197 (2015), 148–157.
-
(2015)
J. Control. Release
, vol.197
, pp. 148-157
-
-
Suliman, S.1
Xing, Z.2
Wu, X.3
Xue, Y.4
Pedersen, T.O.5
Sun, Y.6
-
19
-
-
84899867612
-
Low-dose bone morphogenetic protein-2/stromal cell-derived factor-1β cotherapy induces bone regeneration in critical-size rat calvarial defects
-
[19] Herberg, S., Susin, C., Pelaez, M., Howie, R.N., de Freitas, R.M., Lee, J., et al. Low-dose bone morphogenetic protein-2/stromal cell-derived factor-1β cotherapy induces bone regeneration in critical-size rat calvarial defects. Tissue Eng. Part A 20 (2014), 1444–1453.
-
(2014)
Tissue Eng. Part A
, vol.20
, pp. 1444-1453
-
-
Herberg, S.1
Susin, C.2
Pelaez, M.3
Howie, R.N.4
de Freitas, R.M.5
Lee, J.6
-
20
-
-
84925014423
-
Effect of dual treatment with SDF-1 and BMP-2 on ectopic and orthotopic bone formation
-
[20] Lee, C.H., Jin, M.U., Jung, H.M., Lee, J.T., Kwon, T.G., Effect of dual treatment with SDF-1 and BMP-2 on ectopic and orthotopic bone formation. Plos ONE, 10, 2015, e0120051.
-
(2015)
Plos ONE
, vol.10
, pp. e0120051
-
-
Lee, C.H.1
Jin, M.U.2
Jung, H.M.3
Lee, J.T.4
Kwon, T.G.5
-
21
-
-
84936875715
-
Sequential treatment with SDF-1 and BMP-2 potentiates bone formation in calvarial defects
-
[21] Hwang, H.D., Lee, J.T., Koh, J.T., Jung, H.M., Lee, H.J., Kwon, T.G., Sequential treatment with SDF-1 and BMP-2 potentiates bone formation in calvarial defects. Tissue Eng. Part A 21 (2015), 2125–2135.
-
(2015)
Tissue Eng. Part A
, vol.21
, pp. 2125-2135
-
-
Hwang, H.D.1
Lee, J.T.2
Koh, J.T.3
Jung, H.M.4
Lee, H.J.5
Kwon, T.G.6
-
22
-
-
79959950769
-
A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned
-
[22] Carragee, E.J., Hurwitz, E.L., Weiner, B.K., A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 11 (2011), 471–491.
-
(2011)
Spine J.
, vol.11
, pp. 471-491
-
-
Carragee, E.J.1
Hurwitz, E.L.2
Weiner, B.K.3
-
23
-
-
79955022472
-
High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo
-
[23] Zara, J.N., Siu, R.K., Zhang, X., Shen, J., Ngo, R., Lee, M., et al. High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo. Tissue Eng. Part A 17 (2011), 1389–1399.
-
(2011)
Tissue Eng. Part A
, vol.17
, pp. 1389-1399
-
-
Zara, J.N.1
Siu, R.K.2
Zhang, X.3
Shen, J.4
Ngo, R.5
Lee, M.6
-
24
-
-
84896701922
-
Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery
-
[24] Tannoury, C.A., An, H.S., Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. Spine J. 14 (2014), 552–559.
-
(2014)
Spine J.
, vol.14
, pp. 552-559
-
-
Tannoury, C.A.1
An, H.S.2
-
25
-
-
60649093062
-
Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering
-
[25] Wang, X., Wenk, E., Zhang, X., Meinel, L., Vunjak-Novakovic, G., Kaplan, D.L., Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J. Control. Release 134 (2009), 81–90.
-
(2009)
J. Control. Release
, vol.134
, pp. 81-90
-
-
Wang, X.1
Wenk, E.2
Zhang, X.3
Meinel, L.4
Vunjak-Novakovic, G.5
Kaplan, D.L.6
-
26
-
-
33846799407
-
Silk microspheres for encapsulation and controlled release
-
[26] Wang, X., Wenk, E., Matsumoto, A., Meinel, L., Li, C., Kaplan, D.L., Silk microspheres for encapsulation and controlled release. J. Control. Release 117 (2007), 360–370.
-
(2007)
J. Control. Release
, vol.117
, pp. 360-370
-
-
Wang, X.1
Wenk, E.2
Matsumoto, A.3
Meinel, L.4
Li, C.5
Kaplan, D.L.6
-
27
-
-
84923352854
-
Lumbar interbody fusion with porous biphasic calcium phosphate enhanced by recombinant bone morphogenetic protein-2/silk fibroin sustained-released microsphere: an experimental study on sheep model
-
[27] Chen, L., Liu, H.L., Gu, Y., Feng, Y., Yang, H.L., Lumbar interbody fusion with porous biphasic calcium phosphate enhanced by recombinant bone morphogenetic protein-2/silk fibroin sustained-released microsphere: an experimental study on sheep model. J. Mater. Sci. Mater. Med., 26, 2015, 126.
-
(2015)
J. Mater. Sci. Mater. Med.
, vol.26
, pp. 126
-
-
Chen, L.1
Liu, H.L.2
Gu, Y.3
Feng, Y.4
Yang, H.L.5
-
28
-
-
54949157213
-
Silk fibroin spheres as a platform for controlled drug delivery
-
[28] Wenk, E., Wandrey, A.J., Merkle, H.P., Meinel, L., Silk fibroin spheres as a platform for controlled drug delivery. J. Control. Release 132 (2008), 26–34.
-
(2008)
J. Control. Release
, vol.132
, pp. 26-34
-
-
Wenk, E.1
Wandrey, A.J.2
Merkle, H.P.3
Meinel, L.4
-
29
-
-
84938197884
-
Novel therapeutic core-shell hydrogel scaffolds with sequential delivery of cobalt and bone morphogenetic protein-2 for synergistic bone regeneration
-
[29] Perez, R.A., Kim, J.H., Buitrago, J.O., Wall, I.B., Kim, H.W., Novel therapeutic core-shell hydrogel scaffolds with sequential delivery of cobalt and bone morphogenetic protein-2 for synergistic bone regeneration. Acta Biomater. 23 (2015), 295–308.
-
(2015)
Acta Biomater.
, vol.23
, pp. 295-308
-
-
Perez, R.A.1
Kim, J.H.2
Buitrago, J.O.3
Wall, I.B.4
Kim, H.W.5
-
30
-
-
84933277877
-
Gene expression modulation in TGF-3-mediated rabbit bone marrow stem cells using electrospun scaffolds of various stiffness
-
[30] Guo, Q., Liu, C., Li, J., Zhu, C., Yang, H., Li, B., Gene expression modulation in TGF-3-mediated rabbit bone marrow stem cells using electrospun scaffolds of various stiffness. J. Cell. Mol. Med. 19 (2015), 1582–1592.
-
(2015)
J. Cell. Mol. Med.
, vol.19
, pp. 1582-1592
-
-
Guo, Q.1
Liu, C.2
Li, J.3
Zhu, C.4
Yang, H.5
Li, B.6
-
31
-
-
84894227822
-
Synthesis of silk fibroin micro-and submicron spheres using a co-flow capillary device
-
[31] Mitropoulos, A.N., Perotto, G., Kim, S., Marelli, B., Kaplan, D.L., Omenetto, F.G., Synthesis of silk fibroin micro-and submicron spheres using a co-flow capillary device. Adv. Mater. 26 (2014), 1105–1110.
-
(2014)
Adv. Mater.
, vol.26
, pp. 1105-1110
-
-
Mitropoulos, A.N.1
Perotto, G.2
Kim, S.3
Marelli, B.4
Kaplan, D.L.5
Omenetto, F.G.6
-
32
-
-
84932608554
-
Mechano growth factor (MGF) and transforming growth factor (TGF)-beta 3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model
-
[32] Luo, Z., Jiang, L., Xu, Y., Li, H., Xu, W., Wu, S., et al. Mechano growth factor (MGF) and transforming growth factor (TGF)-beta 3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model. Biomaterials 52 (2015), 463–475.
-
(2015)
Biomaterials
, vol.52
, pp. 463-475
-
-
Luo, Z.1
Jiang, L.2
Xu, Y.3
Li, H.4
Xu, W.5
Wu, S.6
-
33
-
-
84896052134
-
The effect of simvastatin on chemotactic capability of SDF-1 alpha and the promotion of bone regeneration
-
[33] Liu, Y.S., Ou, M.E., Liu, H., Gu, M., Lv, L.W., Fan, C., et al. The effect of simvastatin on chemotactic capability of SDF-1 alpha and the promotion of bone regeneration. Biomaterials 35 (2014), 4489–4498.
-
(2014)
Biomaterials
, vol.35
, pp. 4489-4498
-
-
Liu, Y.S.1
Ou, M.E.2
Liu, H.3
Gu, M.4
Lv, L.W.5
Fan, C.6
-
34
-
-
84964310768
-
Silk fibroin nanoparticle as a novel drug delivery system
-
[34] Mottaghitalab, F., Farokhi, M., Shokrgozar, M.A., Atyabi, F., Hosseinkhani, H., Silk fibroin nanoparticle as a novel drug delivery system. J. Control. Release 206 (2015), 161–176.
-
(2015)
J. Control. Release
, vol.206
, pp. 161-176
-
-
Mottaghitalab, F.1
Farokhi, M.2
Shokrgozar, M.A.3
Atyabi, F.4
Hosseinkhani, H.5
-
35
-
-
84906782250
-
Silk-based biomaterials for sustained drug delivery
-
[35] Yucel, T., Lovett, M.L., Keplan, D.L., Silk-based biomaterials for sustained drug delivery. J. Control. Release 190 (2014), 381–397.
-
(2014)
J. Control. Release
, vol.190
, pp. 381-397
-
-
Yucel, T.1
Lovett, M.L.2
Keplan, D.L.3
-
36
-
-
77954264977
-
Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release
-
[36] Bessa, P.C., Balmayor, E.R., Azevedo, H.S., Nuernberger, S., Casal, M., van Griensven, M., et al. Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release. J. Tissue Eng. Regener. Med. 4 (2010), 349–355.
-
(2010)
J. Tissue Eng. Regener. Med.
, vol.4
, pp. 349-355
-
-
Bessa, P.C.1
Balmayor, E.R.2
Azevedo, H.S.3
Nuernberger, S.4
Casal, M.5
van Griensven, M.6
-
37
-
-
84947203242
-
Silk-based stabilization of biomacromolecules
-
[37] Li, A.B., Kluge, J.A., Guziewicz, N.A., Omenetto, F.G., Kaplan, D.L., Silk-based stabilization of biomacromolecules. J. Control. Release 219 (2015), 416–430.
-
(2015)
J. Control. Release
, vol.219
, pp. 416-430
-
-
Li, A.B.1
Kluge, J.A.2
Guziewicz, N.A.3
Omenetto, F.G.4
Kaplan, D.L.5
-
38
-
-
33344470196
-
Silk fibroin as an organic polymer for controlled drug delivery
-
[38] Hofmann, S., Foo, C., Rossetti, F., Textor, M., Vunjak-Novakovic, G., Kaplan, D.L., et al. Silk fibroin as an organic polymer for controlled drug delivery. J. Control. Release 111 (2006), 219–227.
-
(2006)
J. Control. Release
, vol.111
, pp. 219-227
-
-
Hofmann, S.1
Foo, C.2
Rossetti, F.3
Textor, M.4
Vunjak-Novakovic, G.5
Kaplan, D.L.6
-
39
-
-
0035850221
-
On the importance and mechanisms of burst release in matrix-controlled drug delivery systems
-
[39] Huang, X., Brazel, C.S., On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release 73 (2001), 121–136.
-
(2001)
J. Control. Release
, vol.73
, pp. 121-136
-
-
Huang, X.1
Brazel, C.S.2
-
40
-
-
79951580452
-
Synergistic effects of the dual release of stromal cell-derived factor-1 and bone morphogenetic protein-2 from hydrogels on bone regeneration
-
[40] Ratanavaraporn, J., Furuya, H., Kohara, H., Tabata, Y., Synergistic effects of the dual release of stromal cell-derived factor-1 and bone morphogenetic protein-2 from hydrogels on bone regeneration. Biomaterials 32 (2011), 2797–2811.
-
(2011)
Biomaterials
, vol.32
, pp. 2797-2811
-
-
Ratanavaraporn, J.1
Furuya, H.2
Kohara, H.3
Tabata, Y.4
-
41
-
-
84908306032
-
Role and regulation of Runx2 in osteogenesis
-
[41] Bruderer, M., Richards, R.G., Alini, M., Stoddart, M.J., Role and regulation of Runx2 in osteogenesis. Eur. Cells Mater. 28 (2014), 269–286.
-
(2014)
Eur. Cells Mater.
, vol.28
, pp. 269-286
-
-
Bruderer, M.1
Richards, R.G.2
Alini, M.3
Stoddart, M.J.4
-
42
-
-
39149105335
-
Systemically transplanted bone marrow stromal cells contributing to bone tissue regeneration
-
[42] Li, S., Tu, Q., Zhang, J., Stein, G., Lian, J., Yang, P.S., et al. Systemically transplanted bone marrow stromal cells contributing to bone tissue regeneration. J. Cell. Physiol. 215 (2008), 204–209.
-
(2008)
J. Cell. Physiol.
, vol.215
, pp. 204-209
-
-
Li, S.1
Tu, Q.2
Zhang, J.3
Stein, G.4
Lian, J.5
Yang, P.S.6
-
43
-
-
84919421867
-
Adiponectin regulates bone marrow mesenchymal stem cell niche through a unique signal transduction pathway: an approach for treating bone disease in diabetes
-
[43] Yu, L.M., Tu, Q.S., Han, Q.Q., Zhang, L., Sui, L., Zheng, L.L., et al. Adiponectin regulates bone marrow mesenchymal stem cell niche through a unique signal transduction pathway: an approach for treating bone disease in diabetes. Stem Cells 33 (2015), 240–252.
-
(2015)
Stem Cells
, vol.33
, pp. 240-252
-
-
Yu, L.M.1
Tu, Q.S.2
Han, Q.Q.3
Zhang, L.4
Sui, L.5
Zheng, L.L.6
-
44
-
-
80052304716
-
In vivo bioluminescence for tracking cell fate and function
-
[44] de Almeida, P.E., van Rappard, J.R.M., Wu, J.C., In vivo bioluminescence for tracking cell fate and function. Am. J. Physiol. Heart Circ. Physiol. 301 (2011), H663–H671.
-
(2011)
Am. J. Physiol. Heart Circ. Physiol.
, vol.301
, pp. H663-H671
-
-
de Almeida, P.E.1
van Rappard, J.R.M.2
Wu, J.C.3
-
45
-
-
84855782250
-
Tracking cell therapy bioluminescence lighting the way
-
[45] Hajjar, R.J., Cormode, D.P., Tracking cell therapy bioluminescence lighting the way. JACC-Cardiovasc. Imag. 5 (2012), 56–58.
-
(2012)
JACC-Cardiovasc. Imag.
, vol.5
, pp. 56-58
-
-
Hajjar, R.J.1
Cormode, D.P.2
-
46
-
-
69249162221
-
Regenerative effects of transplanted mesenchymal stem cells in fracture healing
-
[46] Granero-Molto, F., Weis, J.A., Miga, M.I., Landis, B., Myers, T.J., O'Rear, L., et al. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27 (2009), 1887–1898.
-
(2009)
Stem Cells
, vol.27
, pp. 1887-1898
-
-
Granero-Molto, F.1
Weis, J.A.2
Miga, M.I.3
Landis, B.4
Myers, T.J.5
O'Rear, L.6
-
47
-
-
84945296995
-
The fate of systemically administrated allogeneic mesenchymal stem cells in mouse femoral fracture healing
-
[47] Huang, S., Xu, L.L., Sun, Y.X., Zhang, Y.F., Li, G., The fate of systemically administrated allogeneic mesenchymal stem cells in mouse femoral fracture healing. Stem Cell Res. Ther., 6, 2015, 206.
-
(2015)
Stem Cell Res. Ther.
, vol.6
, pp. 206
-
-
Huang, S.1
Xu, L.L.2
Sun, Y.X.3
Zhang, Y.F.4
Li, G.5
-
48
-
-
22144491551
-
Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets
-
[48] Sordi, V., Malosio, M.L., Marchesi, F., Mercalli, A., Melzi, R., Giordano, T., et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106 (2005), 419–427.
-
(2005)
Blood
, vol.106
, pp. 419-427
-
-
Sordi, V.1
Malosio, M.L.2
Marchesi, F.3
Mercalli, A.4
Melzi, R.5
Giordano, T.6
-
49
-
-
18344387590
-
Circulating osteoblast-lineage cells in humans
-
[49] Eghbali-Fatourechi, G.Z., Lamsam, J., Fraser, D., Nagel, D., Riggs, B.L., Khosla, S., Circulating osteoblast-lineage cells in humans. N. Engl. J. Med. 352 (2005), 1959–1966.
-
(2005)
N. Engl. J. Med.
, vol.352
, pp. 1959-1966
-
-
Eghbali-Fatourechi, G.Z.1
Lamsam, J.2
Fraser, D.3
Nagel, D.4
Riggs, B.L.5
Khosla, S.6
-
50
-
-
37549051776
-
Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro
-
[50] Fan, Y., Ye, J., Shen, F., Zhu, Y., Yeghiazarians, Y., Zhu, W., et al. Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J. Cereb. Blood Flow. Metab. 28 (2008), 90–98.
-
(2008)
J. Cereb. Blood Flow. Metab.
, vol.28
, pp. 90-98
-
-
Fan, Y.1
Ye, J.2
Shen, F.3
Zhu, Y.4
Yeghiazarians, Y.5
Zhu, W.6
-
51
-
-
38349073636
-
Circulating bone marrow-derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway
-
[51] Otsuru, S., Tamai, K., Yamazaki, T., Yo shikawa, H., Kaneda, Y., Circulating bone marrow-derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway. Stem Cells 26 (2008), 223–234.
-
(2008)
Stem Cells
, vol.26
, pp. 223-234
-
-
Otsuru, S.1
Tamai, K.2
Yamazaki, T.3
Yo shikawa, H.4
Kaneda, Y.5
-
52
-
-
0031019745
-
Isolation of putative progenitor endothelial cells for angiogenesis
-
[52] Asahara, T., Murohara, T., Sullivan, A., Silver, M., vanderZee, R., Li, T., et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275 (1997), 964–967.
-
(1997)
Science
, vol.275
, pp. 964-967
-
-
Asahara, T.1
Murohara, T.2
Sullivan, A.3
Silver, M.4
vanderZee, R.5
Li, T.6
-
53
-
-
0031026475
-
The chemokine SDF-1 is a chemoattractant for human CD34(+) hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34(+) progenitors to peripheral blood
-
[53] Aiuti, A., Webb, I.J., Bleul, C., Springer, T., GutierrezRamos, J.C., The chemokine SDF-1 is a chemoattractant for human CD34(+) hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34(+) progenitors to peripheral blood. J. Exp. Med. 185 (1997), 111–120.
-
(1997)
J. Exp. Med.
, vol.185
, pp. 111-120
-
-
Aiuti, A.1
Webb, I.J.2
Bleul, C.3
Springer, T.4
GutierrezRamos, J.C.5
-
54
-
-
33646581046
-
Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4(+) hemangiocytes
-
[54] Jin, D.K., Shido, K., Kopp, H.G., Petit, I., Shmelkov, S.V., Young, L.M., et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4(+) hemangiocytes. Nat. Med. 12 (2006), 557–567.
-
(2006)
Nat. Med.
, vol.12
, pp. 557-567
-
-
Jin, D.K.1
Shido, K.2
Kopp, H.G.3
Petit, I.4
Shmelkov, S.V.5
Young, L.M.6
-
55
-
-
32644479707
-
Electrospun silk-BMP-2 scaffolds for bone tissue engineering
-
[55] Li, C.M., Vepari, C., Jin, H.J., Kim, H.J., Kaplan, D.L., Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27 (2006), 3115–3124.
-
(2006)
Biomaterials
, vol.27
, pp. 3115-3124
-
-
Li, C.M.1
Vepari, C.2
Jin, H.J.3
Kim, H.J.4
Kaplan, D.L.5
-
56
-
-
34547114271
-
A novel regulatory role for stromal-derived factor-1 signaling in bone morphogenic protein-2 osteogenic differentiation of mesenchymal C2C12 cells
-
[56] Zhu, W., Boachie-Adjei, O., Rawlins, B.A., Frenkel, B., Boskey, A.L., Ivashkiv, L.B., et al. A novel regulatory role for stromal-derived factor-1 signaling in bone morphogenic protein-2 osteogenic differentiation of mesenchymal C2C12 cells. J. Biol. Chem. 282 (2007), 18676–18685.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 18676-18685
-
-
Zhu, W.1
Boachie-Adjei, O.2
Rawlins, B.A.3
Frenkel, B.4
Boskey, A.L.5
Ivashkiv, L.B.6
-
57
-
-
45549085001
-
Osteogenesis and angiogenesis: the potential for engineering bone
-
[57] Kanczler, J.M., Oreffo, R.O.C., Osteogenesis and angiogenesis: the potential for engineering bone. Eur. Cells Mater. 15 (2008), 100–114.
-
(2008)
Eur. Cells Mater.
, vol.15
, pp. 100-114
-
-
Kanczler, J.M.1
Oreffo, R.O.C.2
|