메뉴 건너뛰기




Volumn 87, Issue 7, 2015, Pages 616-623

gEM/GANN: A multivariate computational strategy for auto-characterizing relationships between cellular and clinical phenotypes and predicting disease progression time using high-dimensional flow cytometry data

Author keywords

Cluster analysis; Expectation maximization; Feature identification; Genetic algorithm neural network; Imbalance; Key terms: FlowCAP; Multidimensional; Survival time

Indexed keywords

ALGORITHM; BIOLOGY; CLUSTER ANALYSIS; DISEASE COURSE; FLOW CYTOMETRY; HIV INFECTIONS; HUMAN; INFORMATION PROCESSING; MULTIVARIATE ANALYSIS; PROCEDURES; PROGNOSIS;

EID: 84932195404     PISSN: 15524922     EISSN: 15524930     Source Type: Journal    
DOI: 10.1002/cyto.a.22622     Document Type: Article
Times cited : (11)

References (21)
  • 1
    • 0019828253 scopus 로고
    • Clinical application of flow cytometry: A review
    • Laerum OD, Farsund T. Clinical application of flow cytometry: A review. Cytometry 1981;2:1-13.
    • (1981) Cytometry , vol.2 , pp. 1-13
    • Laerum, O.D.1    Farsund, T.2
  • 3
  • 5
    • 38349043669 scopus 로고    scopus 로고
    • High-content single-cell drug screening with phosphospecific flow cytometry
    • Krutzik PO, Crane JM, Clutter MR, Nolan GP. High-content single-cell drug screening with phosphospecific flow cytometry. Nat Chem Biol 2008;4:132-142.
    • (2008) Nat Chem Biol , vol.4 , pp. 132-142
    • Krutzik, P.O.1    Crane, J.M.2    Clutter, M.R.3    Nolan, G.P.4
  • 6
    • 33747781716 scopus 로고    scopus 로고
    • Cytomics as a new potential for drug discovery
    • Valet G. Cytomics as a new potential for drug discovery. Drug Discov Today 2006;11:785-791.
    • (2006) Drug Discov Today , vol.11 , pp. 785-791
    • Valet, G.1
  • 8
    • 42049123647 scopus 로고    scopus 로고
    • Automated gating of flow cytometry data via robust model-based clustering
    • Lo K, Brinkman RR, Gottardo R. Automated gating of flow cytometry data via robust model-based clustering. Cytometry A 2008;73A:321-332.
    • (2008) Cytometry A , vol.73A , pp. 321-332
    • Lo, K.1    Brinkman, R.R.2    Gottardo, R.3
  • 10
    • 42949083636 scopus 로고    scopus 로고
    • Mixture modeling approach to flow cytometry data
    • Boedigheimer MJ, Ferbas J. Mixture modeling approach to flow cytometry data. Cytometry A 2008;73A:421-429.
    • (2008) Cytometry A , vol.73A , pp. 421-429
    • Boedigheimer, M.J.1    Ferbas, J.2
  • 11
    • 79960903911 scopus 로고    scopus 로고
    • Hybrid genetic algorithm-neural network: Feature extraction for unpreprocessed microarray data
    • Tong DL, Schierz AC. Hybrid genetic algorithm-neural network: Feature extraction for unpreprocessed microarray data. Artif Intell Med 2011;53:47-56.
    • (2011) Artif Intell Med , vol.53 , pp. 47-56
    • Tong, D.L.1    Schierz, A.C.2
  • 12
    • 48849095351 scopus 로고    scopus 로고
    • Flow cytometry histograms: Transformations, resolution, and display
    • Novo D, Wood J. Flow cytometry histograms: Transformations, resolution, and display. Cytometry A 2008;73A:685-692.
    • (2008) Cytometry A , vol.73A , pp. 685-692
    • Novo, D.1    Wood, J.2
  • 13
    • 14644444573 scopus 로고    scopus 로고
    • Hyperlog-a flexible log-like transform for negative, zero, and positive valued data
    • Bagwell CB. Hyperlog-a flexible log-like transform for negative, zero, and positive valued data. Cytometry A 2005;64A:34-42.
    • (2005) Cytometry A , vol.64A , pp. 34-42
    • Bagwell, C.B.1
  • 14
    • 85047699080 scopus 로고    scopus 로고
    • A new "logicle" display method avoids deceptive effects of logarithmic scaling for low signals and compensated data
    • Parks DR, Roederer M, Moore WA. A new "logicle" display method avoids deceptive effects of logarithmic scaling for low signals and compensated data. Cytometry A 2006;69A:541-551.
    • (2006) Cytometry A , vol.69A , pp. 541-551
    • Parks, D.R.1    Roederer, M.2    Moore, W.A.3
  • 16
    • 78049390650 scopus 로고    scopus 로고
    • Optimizing transformations for automated, high throughput analysis of flow cytometry data
    • Finak G, Perez J-M, Weng A, Gottardo R. Optimizing transformations for automated, high throughput analysis of flow cytometry data. BMC Bioinformatics 2010;11:546.
    • (2010) BMC Bioinformatics , vol.11 , pp. 546
    • Finak, G.1    Perez, J.-M.2    Weng, A.3    Gottardo, R.4
  • 17
    • 0030287048 scopus 로고    scopus 로고
    • The expectation-maximization algorithm
    • Moon TK. The expectation-maximization algorithm. IEEE Signal Process Mag 1996;13:47-60.
    • (1996) IEEE Signal Process Mag , vol.13 , pp. 47-60
    • Moon, T.K.1
  • 18
    • 49449098182 scopus 로고    scopus 로고
    • What is the expectation maximization algorithm?
    • Do CB, Batzoglou S. What is the expectation maximization algorithm? Nat Biotechnol 2008;26:897-899.
    • (2008) Nat Biotechnol , vol.26 , pp. 897-899
    • Do, C.B.1    Batzoglou, S.2
  • 20
    • 79952313704 scopus 로고    scopus 로고
    • Genetic Algorithm-neural network (GANN): A study of neural network activation functions and depth of genetic algorithm search applied to feature selection
    • Tong DL, Mintram R. Genetic Algorithm-neural network (GANN): A study of neural network activation functions and depth of genetic algorithm search applied to feature selection. Int J Mach Learn Cybern 2010;1:75-87.
    • (2010) Int J Mach Learn Cybern , vol.1 , pp. 75-87
    • Tong, D.L.1    Mintram, R.2
  • 21
    • 75149183709 scopus 로고    scopus 로고
    • Virtual screening of bioassay data
    • Schierz AC. Virtual screening of bioassay data. J. Cheminform 2009;1:21
    • (2009) J. Cheminform , vol.1 , pp. 21
    • Schierz, A.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.