메뉴 건너뛰기




Volumn 47, Issue , 2012, Pages

Coordinate descent methods for the penalized semiparametric additive hazards model

Author keywords

Additive hazards model; Coordinate descent; Lasso; Survival

Indexed keywords


EID: 84863302503     PISSN: None     EISSN: 15487660     Source Type: Journal    
DOI: 10.18637/jss.v047.i09     Document Type: Article
Times cited : (18)

References (29)
  • 1
    • 0024401372 scopus 로고
    • A Linear Regression Model for the Analysis of Life Times
    • Aalen OO (1989). A Linear Regression Model for the Analysis of Life Times. Statistics in Medicine, 8, 907-925.
    • (1989) Statistics In Medicine , vol.8 , pp. 907-925
    • Aalen, O.O.1
  • 3
    • 1542784498 scopus 로고    scopus 로고
    • Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties
    • Fan J, Li R (2001). Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties. Journal of the American Statistical Association, 96, 1348-1360.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 5
    • 77950537175 scopus 로고    scopus 로고
    • Regularization Paths for Generalized Linear Models via Coordinate Descent
    • URL
    • Friedman J, Hastie T, Tibshirani R (2010). Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22. URL e-linkurl http://www.jstatsoft.org/v33/i01//url./e-link
    • (2010) Journal of Statistical Software , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 6
    • 77952568988 scopus 로고    scopus 로고
    • L1 Penalized Estimation in the Cox Proportional Hazards Model
    • Goeman JJ (2010). L1 Penalized Estimation in the Cox Proportional Hazards Model. Biometrical Journal, 52, 70-84.
    • (2010) Biometrical Journal , vol.52 , pp. 70-84
    • Goeman, J.J.1
  • 8
    • 21444446838 scopus 로고    scopus 로고
    • Penalized Cox Regression Analysis in the High-Dimensional and LowSample Size Settings, with Applications to Microarray Gene Expression Data
    • Gui J, Li H (2005). Penalized Cox Regression Analysis in the High-Dimensional and LowSample Size Settings, with Applications to Microarray Gene Expression Data. Bioinformatics, 21, 3001-3008.
    • (2005) Bioinformatics , vol.21 , pp. 3001-3008
    • Gui, J.1    Li, H.2
  • 9
    • 34548173203 scopus 로고    scopus 로고
    • Path Consistent Model Selection in Additive Risk Model via Lasso
    • Leng C, Ma S (2007). Path Consistent Model Selection in Additive Risk Model via Lasso. Statistics in Medicine, 26, 3753-3770.
    • (2007) Statistics In Medicine , vol.26 , pp. 3753-3770
    • Leng, C.1    Ma, S.2
  • 10
    • 52349090053 scopus 로고    scopus 로고
    • Censored Data Regression in High-Dimensional and Low-Sample-Size Settings for Genomic Applications
    • A Biswas, S Datta, J Fine, M Segal (eds.), John Wiley & Sons
    • Li H (2008). Censored Data Regression in High-Dimensional and Low-Sample-Size Settings for Genomic Applications. In A Biswas, S Datta, J Fine, M Segal (eds.), Statistical Advances in Biomedical Sciences: State of the Art and Future Directions. John Wiley & Sons.
    • (2008) Statistical Advances In Biomedical Sciences: State of the Art and Future Directions
    • Li, H.1
  • 11
    • 0011880482 scopus 로고
    • Semiparametric Analysis of the Additive Risk Model
    • Lin DY, Ying Z (1994). Semiparametric Analysis of the Additive Risk Model. Biometrika, 81, 61-71.
    • (1994) Biometrika , vol.81 , pp. 61-71
    • Lin, D.Y.1    Ying, Z.2
  • 13
    • 33645092633 scopus 로고    scopus 로고
    • Additive Risk Models for Survival Data with HighDimensional Covariates
    • Ma S, Kosorok M, Fine JP (2006). Additive Risk Models for Survival Data with HighDimensional Covariates. Biometrika, 62, 202-210.
    • (2006) Biometrika , vol.62 , pp. 202-210
    • Ma, S.1    Kosorok, M.2    Fine, J.P.3
  • 14
    • 70350508367 scopus 로고    scopus 로고
    • Covariate Selection for the Semiparametric Additive Risk Model
    • Martinussen T, Scheike TH (2009). Covariate Selection for the Semiparametric Additive Risk Model. Scandinavian Journal of Statistics, 36, 602-619.
    • (2009) Scandinavian Journal of Statistics , vol.36 , pp. 602-619
    • Martinussen, T.1    Scheike, T.H.2
  • 15
    • 67949089821 scopus 로고    scopus 로고
    • The Additive Hazards Model with High-Dimensional Regressors
    • Martinussen T, Scheike TH (2010). The Additive Hazards Model with High-Dimensional Regressors. Lifetime Data Analysis, 15, 330-342.
    • (2010) Lifetime Data Analysis , vol.15 , pp. 330-342
    • Martinussen, T.1    Scheike, T.H.2
  • 16
    • 0001109223 scopus 로고
    • A Partly Parametric Additive Risk Model
    • McKeague IW, Sasieni PD (1994). A Partly Parametric Additive Risk Model. Biometrika, 81, 501-514.
    • (1994) Biometrika , vol.81 , pp. 501-514
    • McKeague, I.W.1    Sasieni, P.D.2
  • 17
    • 34547849507 scopus 로고    scopus 로고
    • L1 Regularization Path Algorithm for Generalized Linear Models
    • Park MY, Hastie T (2007). L1 Regularization Path Algorithm for Generalized Linear Models. Journal of the Royal Statistical Society B, 69, 659-677.
    • (2007) Journal of the Royal Statistical Society B , vol.69 , pp. 659-677
    • Park, M.Y.1    Hastie, T.2
  • 18
    • 84907095419 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing
    • ISBN 3-900051-07-0, URL R Development Core Team
    • R Development Core Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
    • (2012) R Foundation For Statistical Computing, Vienna, Austria
  • 19
    • 79952908736 scopus 로고    scopus 로고
    • Analyzing Competing Risk Data Using the R timereg Package
    • URL
    • Scheike TH, Zhang MJ (2011). Analyzing Competing Risk Data Using the R timereg Package. Journal of Statistical Software, 38, 1-15. URL http://www.jstatsoft.org/v38/i02/.
    • (2011) Journal of Statistical Software , vol.38 , pp. 1-15
    • Scheike, T.H.1    Zhang, M.J.2
  • 20
    • 79952934063 scopus 로고    scopus 로고
    • Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent
    • URL
    • Simon N, Friedman J, Hastie T, Tibshirani R (2011). Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent. Journal of Statistical Software, 39(5), 1-13. URL http://www.jstatsoft.org/v39/i05/.
    • (2011) Journal of Statistical Software , vol.39 , Issue.5 , pp. 1-13
    • Simon, N.1    Friedman, J.2    Hastie, T.3    Tibshirani, R.4
  • 21
    • 67649855127 scopus 로고    scopus 로고
    • Gradient Lasso for Cox Proportional Hazards Model
    • Sohn I, Kim J, Jung S, Park C (2009). Gradient Lasso for Cox Proportional Hazards Model. Bioinformatics, 25, 1775-1781.
    • (2009) Bioinformatics , vol.25 , pp. 1775-1781
    • Sohn, I.1    Kim, J.2    Jung, S.3    Park, C.4
  • 23
    • 0031015557 scopus 로고    scopus 로고
    • The Lasso Method for Variable Selection in the Cox Model
    • Tibshirani R (1997). The Lasso Method for Variable Selection in the Cox Model. Statistics in Medicine, 16, 385-395.
    • (1997) Statistics In Medicine , vol.16 , pp. 385-395
    • Tibshirani, R.1
  • 25
    • 77952251613 scopus 로고
    • Coordinate Ascent for Maximizing Nondifferentiable Concave Functions
    • Massachusetts Institute of Technology, Laboratory for Information and Decision Systems
    • Tseng P (1988). Coordinate Ascent for Maximizing Nondifferentiable Concave Functions. Technical Report LIDS-P, 1840, Massachusetts Institute of Technology, Laboratory for Information and Decision Systems.
    • (1988) Technical Report LIDS-P, 1840
    • Tseng, P.1
  • 28
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and Variable Selection via the Elastic Net
    • Zou H, Hastie T (2005). Regularization and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society B, 67, 301-320.
    • (2005) Journal of the Royal Statistical Society B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.