메뉴 건너뛰기




Volumn 43, Issue 1, 2016, Pages 75-86

Rutin, a flavonoid with antioxidant activity, improves plant salinity tolerance by regulating K+ retention and Na+ exclusion from leaf mesophyll in quinoa and broad beans

Author keywords

ascorbate peroxidase; catalase; Chenopodium quinoa; enzymatic and non enzymatic antioxidants; oxidative stress; phenols; proline; reactive oxygen species; ROS; superoxide dismutase.

Indexed keywords

ANTIOXIDANT; CEREAL; ENZYME ACTIVITY; LEAF; LEGUME; PHENOL; PLANT; POTASSIUM; SALINITY TOLERANCE; SODIUM;

EID: 84983094010     PISSN: 14454408     EISSN: 14454416     Source Type: Journal    
DOI: 10.1071/FP15312     Document Type: Article
Times cited : (91)

References (65)
  • 3
    • 84899944467 scopus 로고    scopus 로고
    • Going beyond nutrition: Regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment
    • Anschutz U, Becker D, Shabala S (2014) Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. Journal of Plant Physiology 171, 670-687. doi:10.1016/j.jplph.2014.01.009
    • (2014) Journal of Plant Physiology , vol.171 , pp. 670-687
    • Anschutz, U.1    Becker, D.2    Shabala, S.3
  • 4
    • 0036535793 scopus 로고    scopus 로고
    • Engineering salt tolerance in plants
    • Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Current Opinion in Biotechnology 13, 146-150. doi:10.1016/S0958-1669(02) 00298-7
    • (2002) Current Opinion in Biotechnology , vol.13 , pp. 146-150
    • Apse, M.P.1    Blumwald, E.2
  • 5
    • 0033385488 scopus 로고    scopus 로고
    • Methods to measure the antioxidant activity in plant material. A comparative discussion
    • Arnao MB, Cano A, Acosta M (1999) Methods to measure the antioxidant activity in plant material. A comparative discussion. Free Radical Research 31(Suppl), S89-S96. doi:10.1080/10715769900301371
    • (1999) Free Radical Research , vol.31 , pp. S89-S96
    • Arnao, M.B.1    Cano, A.2    Acosta, M.3
  • 6
    • 13944249527 scopus 로고    scopus 로고
    • Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity
    • Ben Amor N, Ben Hamed K, Debez A, Grignon C, Abdelly C (2005) Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Science 168, 889-899. doi:10.1016/j.plantsci.2004.11.002
    • (2005) Plant Science , vol.168 , pp. 889-899
    • Ben Amor, N.1    Ben Hamed, K.2    Debez, A.3    Grignon, C.4    Abdelly, C.5
  • 8
    • 84877327563 scopus 로고    scopus 로고
    • Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a halophyte species Chenopodium quinoa
    • Bonales-Alatorre E, Pottosin I, Shabala L, Chen Z-H, Zeng F, Jacobsen S-E, Shabala S (2013a) Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a halophyte species, Chenopodium quinoa. International Journal of Molecular Sciences 14, 9267-9285. doi:10.3390/ijms14 059267
    • (2013) International Journal of Molecular Sciences , vol.14 , pp. 9267-9285
    • Bonales-Alatorre, E.1    Pottosin, I.2    Shabala, L.3    Chen, Z.-H.4    Zeng, F.5    Jacobsen, S.-E.6    Shabala, S.7
  • 9
    • 84878446658 scopus 로고    scopus 로고
    • Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa
    • Bonales-Alatorre E, Shabala S, Chen Z-H, Pottosin I (2013b) Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa. Plant Physiology 162, 940-952. doi:10.1104/pp.113.216572
    • (2013) Plant Physiology , vol.162 , pp. 940-952
    • Bonales-Alatorre, E.1    Shabala, S.2    Chen, Z.-H.3    Pottosin, I.4
  • 10
    • 84897429257 scopus 로고    scopus 로고
    • ROS homeostasis in halophytes in the context of salinity stress tolerance
    • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany 65, 1241-1257. doi:10.1093/jxb/ert430
    • (2014) Journal of Experimental Botany , vol.65 , pp. 1241-1257
    • Bose, J.1    Rodrigo-Moreno, A.2    Shabala, S.3
  • 11
    • 0017184389 scopus 로고
    • A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
    • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2), 248-254. doi:10.1016/0003- 2697(76)90527-3
    • (1976) Analytical Biochemistry , vol.72 , Issue.1-2 , pp. 248-254
    • Bradford, M.M.1
  • 12
    • 84860211570 scopus 로고    scopus 로고
    • High salinity induces dehydrin accumulation in Chenopodium quinoa Willd. Cv. Hualhuas Embryos
    • Burrieza HP, Koyro H-W, Tosar LM, Kobayashi K, Maldonado S (2012) High salinity induces dehydrin accumulation in Chenopodium quinoa Willd. cv. Hualhuas embryos. Plant and Soil 354, 69-79. doi:10.1007/ s11104-011-1045-y
    • (2012) Plant and Soil , vol.354 , pp. 69-79
    • Burrieza, H.P.1    Koyro, H.-W.2    Tosar, L.M.3    Kobayashi, K.4    Maldonado, S.5
  • 13
    • 33646186813 scopus 로고    scopus 로고
    • Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants
    • Cai Y-Z, Sun M, Xing J, Luo Q, CorkeH(2006) Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sciences 78, 2872-2888. doi:10.1016/j.lfs.2005. 11.004
    • (2006) Life Sciences , vol.78 , pp. 2872-2888
    • Cai, Y.-Z.1    Sun, M.2    Xing, J.3    Luo, Q.4    Corke, H.5
  • 14
    • 14844342962 scopus 로고    scopus 로고
    • Understanding and improving salt tolerance in plants
    • Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Science 45, 437-448. doi:10.2135/cropsci 2005.0437
    • (2005) Crop Science , vol.45 , pp. 437-448
    • Chinnusamy, V.1    Jagendorf, A.2    Zhu, J.-K.3
  • 15
    • 34447515608 scopus 로고    scopus 로고
    • Physiological roles of nonselective cation channels in plants: From salt stress to signalling and development
    • Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytologist 175, 387-404. doi:10.1111/j.1469-8137.2007.02128.x
    • (2007) New Phytologist , vol.175 , pp. 387-404
    • Demidchik, V.1    Maathuis, F.J.M.2
  • 16
    • 0037239794 scopus 로고    scopus 로고
    • Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells
    • Demidchik V, Shabala S, Coutts K, Tester M, Davies J (2003) Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. Journal of Cell Science 116, 81-88. doi:10.1242/jcs.00201
    • (2003) Journal of Cell Science , vol.116 , pp. 81-88
    • Demidchik, V.1    Shabala, S.2    Coutts, K.3    Tester, M.4    Davies, J.5
  • 17
    • 77951754328 scopus 로고    scopus 로고
    • Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: Single-channel properties, genetic basis and involvement in stress-induced cell death
    • Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. Journal of Cell Science 123, 1468-1479. doi:10.1242/jcs.064352
    • (2010) Journal of Cell Science , vol.123 , pp. 1468-1479
    • Demidchik, V.1    Cuin, T.A.2    Svistunenko, D.3    Smith, S.J.4    Miller, A.J.5    Shabala, S.6    Sokolik, A.7    Yurin, V.8
  • 18
    • 72649101698 scopus 로고    scopus 로고
    • Antioxidant compound contents and antioxidant activity before and after cooking in sweet and bitter Chenopodium quinoa seeds
    • Dini I, Tenore GC, Dini A (2010) Antioxidant compound contents and antioxidant activity before and after cooking in sweet and bitter Chenopodium quinoa seeds. LWT - Food Science and Technology 43, 447-451.
    • (2010) LWT - Food Science and Technology , vol.43 , pp. 447-451
    • Dini, I.1    Tenore, G.C.2    Dini, A.3
  • 19
    • 79955763354 scopus 로고    scopus 로고
    • Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte
    • Ellouzi H, Ben Hamed K, Cela J, Munne-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiologia Plantarum 142, 128-143. doi:10.1111/j.1399-3054.2011. 01450.x
    • (2011) Physiologia Plantarum , vol.142 , pp. 128-143
    • Ellouzi, H.1    Ben Hamed, K.2    Cela, J.3    Munne-Bosch, S.4    Abdelly, C.5
  • 20
    • 1142281833 scopus 로고    scopus 로고
    • Improving crop salt tolerance
    • Flowers TJ (2004) Improving crop salt tolerance. Journal of Experimental Botany 55, 307-319. doi:10.1093/jxb/erh003
    • (2004) Journal of Experimental Botany , vol.55 , pp. 307-319
    • Flowers, T.J.1
  • 21
    • 49249139258 scopus 로고    scopus 로고
    • Salinity tolerance in halophytes
    • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytologist 179, 945-963. doi:10.1111/j.1469-8137.2008.02531.x
    • (2008) New Phytologist , vol.179 , pp. 945-963
    • Flowers, T.J.1    Colmer, T.D.2
  • 22
    • 0029187932 scopus 로고
    • Breeding for salinity resistance in crop plants: Where next?
    • Flowers T, Yeo A (1995) Breeding for salinity resistance in crop plants: where next? Australian Journal of Plant Physiology 22, 875-884. doi:10.1071/PP9950875
    • (1995) Australian Journal of Plant Physiology , vol.22 , pp. 875-884
    • Flowers, T.1    Yeo, A.2
  • 23
    • 78049474352 scopus 로고    scopus 로고
    • Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants
    • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48, 909-930. doi:10.1016/j.plaphy.2010.08.016
    • (2010) Plant Physiology and Biochemistry , vol.48 , pp. 909-930
    • Gill, S.S.1    Tuteja, N.2
  • 25
    • 84861057419 scopus 로고    scopus 로고
    • Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimens
    • Gomez-Caravaca AM, Iafelice G, Lavini A, Pulvento C, Caboni MF, Marconi E (2012) Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimens. Journal of Agricultural and Food Chemistry 60, 4620-4627. doi:10.1021/jf3002125
    • (2012) Journal of Agricultural and Food Chemistry , vol.60 , pp. 4620-4627
    • Gomez-Caravaca, A.M.1    Iafelice, G.2    Lavini, A.3    Pulvento, C.4    Caboni, M.F.5    Marconi, E.6
  • 26
    • 78649846906 scopus 로고    scopus 로고
    • Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels
    • Hariadi Y, Marandon K, Tian Y, Jacobsen S-E, Shabala S (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany 62, 185-193. doi:10.1093/jxb/erq257
    • (2011) Journal of Experimental Botany , vol.62 , pp. 185-193
    • Hariadi, Y.1    Marandon, K.2    Tian, Y.3    Jacobsen, S.-E.4    Shabala, S.5
  • 27
    • 0037504145 scopus 로고    scopus 로고
    • The worldwide potential for quinoa (Chenopodium quinoa Willd)
    • Jacobsen S-E (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Reviews International 19, 167-177. doi:10.1081/ FRI-120018883
    • (2003) Food Reviews International , vol.19 , pp. 167-177
    • Jacobsen, S.-E.1
  • 28
    • 0037504150 scopus 로고    scopus 로고
    • The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors
    • Jacobsen S-E, Mujica A, Jensen CR (2003) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Reviews International 19, 99-109. doi:10.1081/FRI-120018872
    • (2003) Food Reviews International , vol.19 , pp. 99-109
    • Jacobsen, S.-E.1    Mujica, A.2    Jensen, C.R.3
  • 30
    • 79955606169 scopus 로고    scopus 로고
    • Improved measurements of Na+ fluxes in plants using calixarene-based microelectrodes
    • Jayakannan M, Babourina O, Rengel Z (2011) Improved measurements of Na+ fluxes in plants using calixarene-based microelectrodes. Journal of Plant Physiology 168, 1045-1051. doi:10.1016/j.jplph.2010.12.006
    • (2011) Journal of Plant Physiology , vol.168 , pp. 1045-1051
    • Jayakannan, M.1    Babourina, O.2    Rengel, Z.3
  • 31
    • 33746100259 scopus 로고    scopus 로고
    • Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis
    • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida A (2006) Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Reports 25, 865-876. doi:10.1007/s00299-006-0127-4
    • (2006) Plant Cell Reports , vol.25 , pp. 865-876
    • Jithesh, M.N.1    Prashanth, S.R.2    Sivaprakash, K.R.3    Parida, A.4
  • 32
    • 34247346550 scopus 로고    scopus 로고
    • Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima
    • Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiology and Biochemistry 45, 244-249. doi:10.1016/j.plaphy.2007.02.001
    • (2007) Plant Physiology and Biochemistry , vol.45 , pp. 244-249
    • Ksouri, R.1    Megdiche, W.2    Debez, A.3    Falleh, H.4    Grignon, C.5    Abdelly, C.6
  • 33
    • 0032780960 scopus 로고    scopus 로고
    • K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios
    • Maathuis F, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Annals of Botany 84, 123-133. doi:10.1006/ anbo.1999.0912
    • (1999) Annals of Botany , vol.84 , pp. 123-133
    • Maathuis, F.1    Amtmann, A.2
  • 34
    • 0014691242 scopus 로고
    • Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein)
    • McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry 244, 6049-6055.
    • (1969) Journal of Biological Chemistry , vol.244 , pp. 6049-6055
    • McCord, J.M.1    Fridovich, I.2
  • 35
    • 1842787959 scopus 로고    scopus 로고
    • Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritima
    • Moghaieb R (2004) Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritima. Plant Science 166, 1345-1349. doi:10.1016/j.plantsci. 2004.01.016
    • (2004) Plant Science , vol.166 , pp. 1345-1349
    • Moghaieb, R.1
  • 37
    • 43149090878 scopus 로고    scopus 로고
    • Mechanisms of salinity tolerance
    • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651-681. doi:10.1146/annurev.arplant.59. 032607.092911
    • (2008) Annual Review of Plant Biology , vol.59 , pp. 651-681
    • Munns, R.1    Tester, M.2
  • 38
    • 0010282460 scopus 로고
    • Hydrogen peroxide is scavenged by ascorbatespecific peroxidase in spinach chloroplasts
    • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbatespecific peroxidase in spinach chloroplasts. Plant & Cell Physiology 22 (5), 867-880.
    • (1981) Plant & Cell Physiology , vol.22 , Issue.5 , pp. 867-880
    • Nakano, Y.1    Asada, K.2
  • 39
    • 80053111227 scopus 로고    scopus 로고
    • Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: Functional elements of successful halophytism
    • Orsini F, Accorsi M, Gianquinto G (2011) Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Functional Plant Biology 38, 818-831. doi:10.1071/FP11088
    • (2011) Functional Plant Biology , vol.38 , pp. 818-831
    • Orsini, F.1    Accorsi, M.2    Gianquinto, G.3
  • 40
    • 82155186184 scopus 로고    scopus 로고
    • Evaluation of antioxidant activities of the edible and medicinal Suaeda species and related phenolic compounds
    • Oueslati S, Trabelsi N, Boulaaba M, Legault J, Abdelly C, Ksouri R (2012) Evaluation of antioxidant activities of the edible and medicinal Suaeda species and related phenolic compounds. Industrial Crops and Products 36, 513-518. doi:10.1016/j.indcrop.2011.10.006
    • (2012) Industrial Crops and Products , vol.36 , pp. 513-518
    • Oueslati, S.1    Trabelsi, N.2    Boulaaba, M.3    Legault, J.4    Abdelly, C.5    Ksouri, R.6
  • 42
    • 84986598822 scopus 로고    scopus 로고
    • Effect of saline water on seed germination and early seedling growth of the halophyte quinoa
    • plu0
    • Panuccio MR, Jacobsen SE, Akhtar SS, Muscolo A (2014) Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants 6, plu047. doi:10.1093/aobpla/plu047
    • (2014) AoB Plants , vol.6 , pp. 47
    • Panuccio, M.R.1    Jacobsen, S.E.2    Akhtar, S.S.3    Muscolo, A.4
  • 43
    • 84907703370 scopus 로고    scopus 로고
    • Ion transport in broad bean leaf mesophyll under saline conditions
    • Percey WJ, Shabala L, Breadmore MC, Guijt RM, Bose J, Shabala S (2014) Ion transport in broad bean leaf mesophyll under saline conditions. Planta 240, 729-743. doi:10.1007/s00425-014-2117-z
    • (2014) Planta , vol.240 , pp. 729-743
    • Percey, W.J.1    Shabala, L.2    Breadmore, M.C.3    Guijt, R.M.4    Bose, J.5    Shabala, S.6
  • 46
    • 0030023240 scopus 로고    scopus 로고
    • Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of
    • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology 110(1), 125-136. doi:10.1104/pp.110.1.125
    • (1996) Arabidopsis Thaliana. Plant Physiology , vol.110 , Issue.1 , pp. 125-136
    • Rao, M.V.1    Paliyath, G.2    Ormrod, D.P.3
  • 48
    • 84920744164 scopus 로고    scopus 로고
    • Ionic and photosynthetic homeostasis in quinoa challenged by salinity and drought - Mechanisms of tolerance
    • Razzaghi F, Jacobsen S-E, Jensen CR, Andersen MN (2015) Ionic and photosynthetic homeostasis in quinoa challenged by salinity and drought - mechanisms of tolerance. Functional Plant Biology 42, 136-148. doi:10.1071/FP14132
    • (2015) Functional Plant Biology , vol.42 , pp. 136-148
    • Razzaghi, F.1    Jacobsen, S.-E.2    Jensen, C.R.3    Andersen, M.N.4
  • 50
    • 0037328734 scopus 로고    scopus 로고
    • Photometric determination of proline in quartz microplates: Remarks on specificity
    • Ringel C, Siebert S, Wienhaus O (2003) Photometric determination of proline in quartz microplates: remarks on specificity. Analytical Biochemistry 313(1), 167-169. doi:10.1016/S0003-2697(02)00565-1
    • (2003) Analytical Biochemistry , vol.313 , Issue.1 , pp. 167-169
    • Ringel, C.1    Siebert, S.2    Wienhaus, O.3
  • 52
    • 80053537036 scopus 로고    scopus 로고
    • Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression
    • Ruiz-Carrasco K, Antognoni F, Coulibaly AK, Lizardi S, Covarrubias A, Martinez EA, Molina-Montenegro MA, Biondi S, Zurita-Silva A (2011) Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiology and Biochemistry 49, 1333-1341. doi:10.1016/j.plaphy.2011.08.005
    • (2011) Plant Physiology and Biochemistry , vol.49 , pp. 1333-1341
    • Ruiz-Carrasco, K.1    Antognoni, F.2    Coulibaly, A.K.3    Lizardi, S.4    Covarrubias, A.5    Martinez, E.A.6    Ma, M.7    Biondi, S.8    Zurita-Silva, A.9
  • 53
    • 77950521335 scopus 로고    scopus 로고
    • The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley
    • Seckin B, Turkan I, Sekmen AH, Ozfidan C (2010) The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environmental and Experimental Botany 69, 76-85. doi:10.1016/ j.envexpbot.2010.02.013
    • (2010) Environmental and Experimental Botany , vol.69 , pp. 76-85
    • Seckin, B.1    Turkan, I.2    Sekmen, A.H.3    Ozfidan, C.4
  • 54
    • 34848909898 scopus 로고    scopus 로고
    • Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media
    • Sekmen AH, Turkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiologia Plantarum 131, 399-411. doi:10.1111/j.1399-3054.2007.00970.x
    • (2007) Physiologia Plantarum , vol.131 , pp. 399-411
    • Sekmen, A.H.1    Turkan, I.2    Takio, S.3
  • 55
    • 84889820022 scopus 로고    scopus 로고
    • Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops
    • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany 112, 1209-1221. doi:10.1093/aob/mct205
    • (2013) Annals of Botany , vol.112 , pp. 1209-1221
    • Shabala, S.1
  • 56
    • 84902346351 scopus 로고    scopus 로고
    • Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance
    • Shabala S, Pottosin I (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiologia Plantarum 151, 257-279. doi:10.1111/ppl.12165
    • (2014) Physiologia Plantarum , vol.151 , pp. 257-279
    • Shabala, S.1    Pottosin, I.2
  • 57
    • 33645468068 scopus 로고    scopus 로고
    • Non-invasive microelectrode ion flux measurements to study adaptive responses of microorganisms to the environment
    • Shabala L, Ross T, McMeekin T, Shabala S (2006) Non-invasive microelectrode ion flux measurements to study adaptive responses of microorganisms to the environment. FEMS Microbiology Reviews 30, 472-486. doi:10.1111/j.1574-6976.2006.00019.x
    • (2006) FEMS Microbiology Reviews , vol.30 , pp. 472-486
    • Shabala, L.1    Ross, T.2    McMeekin, T.3    Shabala, S.4
  • 58
    • 84865064301 scopus 로고    scopus 로고
    • Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa
    • Shabala L, Mackay A, Tian Y, Jacobsen S-E, Zhou D, Shabala S (2012) Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiologia Plantarum 146, 26-38. doi:10.1111/j.1399-3054.2012. 01599.x
    • (2012) Physiologia Plantarum , vol.146 , pp. 26-38
    • Shabala, L.1    Mackay, A.2    Tian, Y.3    Jacobsen, S.-E.4    Zhou, D.5    Shabala, S.6
  • 59
    • 84878111840 scopus 로고    scopus 로고
    • Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density
    • Shabala S, Hariadi Y, Jacobsen S-E (2013) Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density. Journal of Plant Physiology 170, 906-914. doi:10.1016/j.jplph.2013.01.014
    • (2013) Journal of Plant Physiology , vol.170 , pp. 906-914
    • Shabala, S.1    Hariadi, Y.2    Jacobsen, S.-E.3
  • 60
  • 61
    • 0000359845 scopus 로고
    • Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents
    • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16, 144-158.
    • (1965) American Journal of Enology and Viticulture , vol.16 , pp. 144-158
    • Singleton, V.L.1    Rossi, J.A.2
  • 62
    • 84866657451 scopus 로고    scopus 로고
    • Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K+ efflux by polyamines
    • Velarde-Buendia AM, Shabala S, Cvikrova M, Dobrovinskaya O, Pottosin I (2012) Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K+ efflux by polyamines. Plant Physiology and Biochemistry 61, 18-23. doi:10.1016/j.plaphy. 2012.09.002
    • (2012) Plant Physiology and Biochemistry , vol.61 , pp. 18-23
    • Velarde-Buendia, A.M.1    Shabala, S.2    Cvikrova, M.3    Dobrovinskaya, O.4    Pottosin, I.5
  • 63
    • 84948136482 scopus 로고    scopus 로고
    • Phenolic content changes in plants under salt stress
    • (Eds A Parvaiz, MM Azooz, MNV Prasad) (Springer- Verlag: New York)
    • Waskiewicz A, Muzolf-Panek M, Golinski P (2013) Phenolic content changes in plants under salt stress. Ecophysiology and responses plants under salt stress. (Eds A Parvaiz, MM Azooz, MNV Prasad) pp. 283-314. (Springer-Verlag: New York
    • (2013) Ecophysiology and Responses Plants under Salt Stress , pp. 283-314
    • Waskiewicz, A.1    Muzolf-Panek, M.2    Golinski, P.3
  • 64
    • 0038949224 scopus 로고    scopus 로고
    • SOS1, a genetic locus essential for salt tolerance and potassium acquisition
    • Wu SJ, Ding L, Zhu JK (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. The Plant Cell 8, 617-627. doi:10.1105/tpc.8.4.617
    • (1996) The Plant Cell , vol.8 , pp. 617-627
    • Wu, S.J.1    Ding, L.2    Zhu, J.K.3
  • 65
    • 84920036751 scopus 로고    scopus 로고
    • Chemical composition, bioactive compounds, antioxidant capacity and stability of floral maize (Zea mays L.) pollen
    • Zilic S, Vancetovic J, Jankovic M, Maksimovic V (2014) Chemical composition, bioactive compounds, antioxidant capacity and stability of floral maize (Zea mays L.) pollen. Journal of Functional Foods 10, 65-74. doi:10.1016/j.jff.2014.05.007
    • (2014) Journal of Functional Foods , vol.10 , pp. 65-74
    • Zilic, S.1    Vancetovic, J.2    Jankovic, M.3    Maksimovic, V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.