메뉴 건너뛰기




Volumn 10, Issue 2, 2016, Pages 638-666

A spatiotemporal nonparametric Bayesian model of multi-subject fMRI data

Author keywords

Multi subject fMRI; Spatiotemporal linear regression; Variable selection priors; Variational Bayes

Indexed keywords


EID: 84979937090     PISSN: 19326157     EISSN: 19417330     Source Type: Journal    
DOI: 10.1214/16-AOAS926     Document Type: Article
Times cited : (50)

References (63)
  • 2
    • 84865733633 scopus 로고    scopus 로고
    • On the support of MacEachern’s dependent Dirichlet processes and extensions
    • MR2934952
    • BARRIENTOS, A. F., JARA, A. and QUINTANA, F. A. (2012). On the support of MacEachern’s dependent Dirichlet processes and extensions. Bayesian Anal. 7 277–309. MR2934952
    • (2012) Bayesian Anal , vol.7 , pp. 277-309
    • Barrientos, A.F.1    Jara, A.2    Quintana, F.A.3
  • 4
    • 84867186048 scopus 로고    scopus 로고
    • Variational inference for Dirichlet process mixtures
    • (electronic). MR2227367
    • BLEI, D. M. and JORDAN, M. I. (2006). Variational inference for Dirichlet process mixtures. Bayesian Anal. 1 121–143 (electronic). MR2227367
    • (2006) Bayesian Anal , vol.1 , pp. 121-143
    • Blei, D.M.1    Jordan, M.I.2
  • 5
    • 36148954681 scopus 로고    scopus 로고
    • A Bayesian hierarchical framework for spatial modeling of fMRI data
    • BOWMAN, F., CAFFO, B., BASSETT, S. and KILTS, C. (2008). A Bayesian hierarchical framework for spatial modeling of fMRI data. NeuroImage 39 146–156.
    • (2008) Neuroimage , vol.39 , pp. 146-156
    • Bowman, F.1    Caffo, B.2    Bassett, S.3    Kilts, C.4
  • 6
    • 0031021275 scopus 로고    scopus 로고
    • A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation
    • BUXTON, R. and FRANK, L. (1997). A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J. Cereb. Blood Flow Metab. 17 64–72.
    • (1997) J. Cereb. Blood Flow Metab , vol.17 , pp. 64-72
    • Buxton, R.1    Frank, L.2
  • 7
    • 84860819981 scopus 로고    scopus 로고
    • Scalable variational inference for Bayesian variable selection in regression, and its accuracy in genetic association studies
    • MR2896713
    • CARBONETTO, P. and STEPHENS, M. (2012). Scalable variational inference for Bayesian variable selection in regression, and its accuracy in genetic association studies. Bayesian Anal. 7 73–107. MR2896713
    • (2012) Bayesian Anal , vol.7 , pp. 73-107
    • Carbonetto, P.1    Stephens, M.2
  • 9
    • 47749152434 scopus 로고    scopus 로고
    • Microarrays, empirical Bayes and the two-groups model
    • MR2431866
    • EFRON, B. (2008). Microarrays, empirical Bayes and the two-groups model. Statist. Sci. 23 1–22. MR2431866
    • (2008) Statist. Sci , vol.23 , pp. 1-22
    • Efron, B.1
  • 10
    • 0036328554 scopus 로고    scopus 로고
    • Wavelet-generalised least squares: A new BLU esti-mator of linear regression models with 1/f errors
    • FADILI, M. J. and BULLMORE, E. T. (2002). Wavelet-generalised least squares: A new BLU esti-mator of linear regression models with 1/f errors. NeuroImage 15 217–232.
    • (2002) Neuroimage , vol.15 , pp. 217-232
    • Fadili, M.J.1    Bullmore, E.T.2
  • 11
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • MR0350949
    • FERGUSON, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209–230. MR0350949
    • (1973) Ann. Statist , vol.1 , pp. 209-230
    • Ferguson, T.S.1
  • 12
    • 33947179549 scopus 로고    scopus 로고
    • Bayesian fMRI data analysis with sparse spatial basis function priors
    • FLandIN, G. and PENNY, W. D. (2007). Bayesian fMRI data analysis with sparse spatial basis function priors. NeuroImage 34 1108–1125.
    • (2007) Neuroimage , vol.34 , pp. 1108-1125
    • Flandin, G.1    Penny, W.D.2
  • 13
    • 0028190347 scopus 로고
    • Functional and effective connectivity in neuroimaging: A synthesis
    • FRISTON, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Hum. Brain Mapp. 2 56–78.
    • (1994) Hum. Brain Mapp , vol.2 , pp. 56-78
    • Friston, K.J.1
  • 14
    • 81355137473 scopus 로고    scopus 로고
    • Functional and effective connectivity: A review
    • FRISTON, K. J. (2011). Functional and effective connectivity: A review. Brain Connectivity 1 13–36.
    • (2011) Brain Connectivity , vol.1 , pp. 13-36
    • Friston, K.J.1
  • 15
    • 12244278584 scopus 로고
    • Analysis of functional MRI time-series
    • FRISTON, K. J., JEZZARD, P. and TURNER, R. (1994). Analysis of functional MRI time-series. Hum. Brain Mapp. 1 153–171.
    • (1994) Hum. Brain Mapp , vol.1 , pp. 153-171
    • Friston, K.J.1    Jezzard, P.2    Turner, R.3
  • 16
    • 0042671121 scopus 로고    scopus 로고
    • Posterior probability maps and SPMs
    • FRISTON, K. J. and PENNY, W. (2003). Posterior probability maps and SPMs. NeuroImage 19 1240–1249.
    • (2003) Neuroimage , vol.19 , pp. 1240-1249
    • Friston, K.J.1    Penny, W.2
  • 19
    • 77549088909 scopus 로고    scopus 로고
    • A Bayesian spatiotemporal model for very large data sets
    • HARRISON, L. M. and GREEN, G. G. R. (2010). A Bayesian spatiotemporal model for very large data sets. NeuroImage 50 1126–1141.
    • (2010) Neuroimage , vol.50 , pp. 1126-1141
    • Harrison, L.M.1    Green, G.G.R.2
  • 20
    • 0033647016 scopus 로고    scopus 로고
    • Spatial mixture modeling of fMRI data. Hum
    • HARTVIG, N. V. and JENSEN, J. L. (2000). Spatial mixture modeling of fMRI data. Hum. Brain Mapp. 11 233–248.
    • (2000) Brain Mapp , vol.11 , pp. 233-248
    • Hartvig, N.V.1    Jensen, J.L.2
  • 21
    • 21944448369 scopus 로고    scopus 로고
    • Generalisability, random effects & population inference
    • HOLMES, A. P. and FRISTON, K. J. (1998). Generalisability, random effects & population inference. Neuroimage 7 S754.
    • (1998) Neuroimage , vol.7 , pp. 754
    • Holmes, A.P.1    Friston, K.J.2
  • 22
    • 1842816362 scopus 로고    scopus 로고
    • Gibbs sampling methods for stick-breaking priors
    • MR1952729
    • ISHWARAN, H. and JAMES, L. F. (2001). Gibbs sampling methods for stick-breaking priors. J. Amer. Statist. Assoc. 96 161–173. MR1952729
    • (2001) J. Amer. Statist. Assoc , vol.96 , pp. 161-173
    • Ishwaran, H.1    James, L.F.2
  • 23
    • 56349160115 scopus 로고    scopus 로고
    • Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models
    • JBABDI, S., WOOLRICH, M. W. and BEHRENS, T. E. J. (2009). Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models. NeuroImage 44 373–384.
    • (2009) Neuroimage , vol.44 , pp. 373-384
    • Jbabdi, S.1    Woolrich, M.W.2    Behrens, T.E.J.3
  • 24
    • 84875939607 scopus 로고    scopus 로고
    • A wavelet-based Bayesian approach to regres-sion models with long memory errors and its application to fMRI data
    • MR3058065
    • JEONG, J., VANNUCCI, M. and KO, K. (2013). A wavelet-based Bayesian approach to regres-sion models with long memory errors and its application to fMRI data. Biometrics 69 184–196. MR3058065
    • (2013) Biometrics , vol.69 , pp. 184-196
    • Jeong, J.1    Vannucci, M.2    Ko, K.3
  • 25
    • 84881450950 scopus 로고    scopus 로고
    • A Bayesian non-parametric Potts model with application to pre-surgical FMRI data
    • MR3190664
    • JOHNSON, T. D., LIU, Z., BARTSCH, A. J. and NICHOLS, T. E. (2013). A Bayesian non-parametric Potts model with application to pre-surgical FMRI data. Stat. Methods Med. Res. 22 364–381. MR3190664
    • (2013) Stat. Methods Med. Res , vol.22 , pp. 364-381
    • Johnson, T.D.1    Liu, Z.2    Bartsch, A.J.3    Nichols, T.E.4
  • 26
    • 67649666979 scopus 로고    scopus 로고
    • An introduction to anatomical ROI-based fMRI classification analysis
    • JOSET, A. E., GAZZOLA, V. and KEYSERS, C. (2009). An introduction to anatomical ROI-based fMRI classification analysis. Brain Res. 1282 114–125.
    • (2009) Brain Res , vol.1282 , pp. 114-125
    • Joset, A.E.1    Gazzola, V.2    Keysers, C.3
  • 27
    • 84894528817 scopus 로고    scopus 로고
    • Classification of brain activation via spatial Bayesian variable selection in fMRI regression
    • MR3168680
    • KALUS, S., SÄMANN, P. G. and FAHRMEIR, L. (2014). Classification of brain activation via spatial Bayesian variable selection in fMRI regression. Adv. Data Anal. Classif. 8 63–83. MR3168680
    • (2014) Adv. Data Anal. Classif , vol.8 , pp. 63-83
    • Kalus, S.1    Sämann, P.G.2    Fahrmeir, L.3
  • 29
    • 84916894479 scopus 로고    scopus 로고
    • Spatial Bayesian variable selection models on functional magnetic resonance imaging time-series data
    • MR3256061
    • LEE, K.-J., JONES, G. L., CAFFO, B. S. and BASSETT, S. S. (2014). Spatial Bayesian variable selection models on functional magnetic resonance imaging time-series data. Bayesian Anal. 9 699–731. MR3256061
    • (2014) Bayesian Anal , vol.9 , pp. 699-731
    • Lee, K.-J.1    Jones, G.L.2    Caffo, B.S.3    Bassett, S.S.4
  • 30
    • 84938535206 scopus 로고    scopus 로고
    • Spatial Bayesian variable selection and grouping for high-dimensional scalar-on-image regression
    • MR3371331
    • LI, F., ZHANG, T., WANG, Q., GONZALEZ, M. Z., MARESH, E. L. and COAN, J. A. (2015). Spatial Bayesian variable selection and grouping for high-dimensional scalar-on-image regression. Ann. Appl. Stat. 9 687–713. MR3371331
    • (2015) Ann. Appl. Stat , vol.9 , pp. 687-713
    • Li, F.1    Zhang, T.2    Wang, Q.3    Gonzalez, M.Z.4    Maresh, E.L.5    Coan, J.A.6
  • 31
    • 67649342618 scopus 로고    scopus 로고
    • The statistical analysis of fMRI data
    • MR2530545
    • LINDQUIST, M. A. (2008). The statistical analysis of fMRI data. Statist. Sci. 23 439–464. MR2530545
    • (2008) Statist. Sci , vol.23 , pp. 439-464
    • Lindquist, M.A.1
  • 32
    • 0038660249 scopus 로고    scopus 로고
    • Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series
    • MEYER, F. G. (2003). Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series. IEEE Trans. Med. Imag. 22 315–322.
    • (2003) IEEE Trans. Med. Imag , vol.22 , pp. 315-322
    • Meyer, F.G.1
  • 33
    • 41349110333 scopus 로고    scopus 로고
    • FDR and Bayesian multiple comparisons rules
    • (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.). Oxford Sci. Publ, Oxford Univ. Press, Oxford, MR2433200
    • MÜLLER, P., PARMIGIANI, G. and RICE, K. (2007). FDR and Bayesian multiple comparisons rules. In Bayesian Statistics 8 (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.). Oxford Sci. Publ. 349–370. Oxford Univ. Press, Oxford. MR2433200
    • (2007) Bayesian Statistics , vol.8 , pp. 349-370
    • Müller, P.1    Parmigiani, G.2    Rice, K.3
  • 34
    • 4444235995 scopus 로고    scopus 로고
    • Detecting differential gene expression with a semiparametric hierarchical mixture method
    • NEWTON, M. A., NOUEIRY, A., SARKAR, D. and AHLQUIST, P. (2004). Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 5 155–176.
    • (2004) Biostatistics , vol.5 , pp. 155-176
    • Newton, M.A.1    Noueiry, A.2    Sarkar, D.3    Ahlquist, P.4
  • 35
    • 0042671302 scopus 로고    scopus 로고
    • Variational Bayesian inference for fmri time series
    • PENNY, W., KIEBEL, S. and FRISTON, K. J. (2003). Variational Bayesian inference for fmri time series. NeuroImage 19 727–741.
    • (2003) Neuroimage , vol.19 , pp. 727-741
    • Penny, W.1    Kiebel, S.2    Friston, K.J.3
  • 36
    • 16244387927 scopus 로고    scopus 로고
    • Bayesian fMRI time series analysis with spatial priors
    • PENNY, W. D., TRUJILLO-BARRETO, N. and FRISTON, K. J. (2005). Bayesian fMRI time series analysis with spatial priors. NeuroImage 24 350–362.
    • (2005) Neuroimage , vol.24 , pp. 350-362
    • Penny, W.D.1    Trujillo-Barreto, N.2    Friston, K.J.3
  • 37
    • 0005193926 scopus 로고    scopus 로고
    • Exact sampling with coupled Markov chains and applica-tions to statistical mechanics
    • (Atlanta, GA, 1995), Random Structures Algorithms, 1-2. MR1611693
    • PROPP, J. G. and WILSON, D. B. (1996). Exact sampling with coupled Markov chains and applica-tions to statistical mechanics. In Proceedings of the Seventh International Conference on Random Structures and Algorithms (Atlanta, GA, 1995) 9 223–252. Random Structures Algorithms, 1-2. MR1611693
    • (1996) In Proceedings of the Seventh International Conference on Random Structures and Algorithms , vol.9 , pp. 223-252
    • Propp, J.G.1    Wilson, D.B.2
  • 38
    • 70349971910 scopus 로고    scopus 로고
    • Bayesian spatiotemporal model of fMRI data
    • QUIRÓS, A., DIEZ, R. M. and GAMERMAN, D. (2010). Bayesian spatiotemporal model of fMRI data. NeuroImage 49 442–456.
    • (2010) Neuroimage , vol.49 , pp. 442-456
    • Quirós, A.1    Diez, R.M.2    Gamerman, D.3
  • 39
    • 84972518066 scopus 로고
    • One long run with diagnostics: Implementation strategies for Markov chain Monte Carlo
    • RAFTERY, A. E. and LEWIS, S. M. (1992). One long run with diagnostics: Implementation strategies for Markov chain Monte Carlo. Statist. Sci. 7 493–497.
    • (1992) Statist. Sci , vol.7 , pp. 493-497
    • Raftery, A.E.1    Lewis, S.M.2
  • 41
    • 84883647801 scopus 로고    scopus 로고
    • Revisiting multi-subject random effects in fMRI: Advocating prevalence estimation
    • ROSENBLATT, J. D., VINK, M. and BENJAMINI, Y. (2014). Revisiting multi-subject random effects in fMRI: Advocating prevalence estimation. NeuroImage 84 113–121.
    • (2014) Neuroimage , vol.84 , pp. 113-121
    • Rosenblatt, J.D.1    Vink, M.2    Benjamini, Y.3
  • 42
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaus-sian models by using integrated nested Laplace approximations
    • MR2649602
    • RUE, H., MARTINO, S. and CHOPIN, N. (2009). Approximate Bayesian inference for latent Gaus-sian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 319–392. MR2649602
    • (2009) J. R. Stat. Soc. Ser. B Stat. Methodol , vol.71 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 43
    • 84866150436 scopus 로고    scopus 로고
    • Bayesian hierarchical multi-subject multiscale analysis of functional MRI data
    • SANYAL, N. and FERREIRA, M. A. (2012). Bayesian hierarchical multi-subject multiscale analysis of functional MRI data. NeuroImage 63 1519–1531.
    • (2012) Neuroimage , vol.63 , pp. 1519-1531
    • Sanyal, N.1    Ferreira, M.A.2
  • 44
    • 84859166106 scopus 로고    scopus 로고
    • Spiked Dirichlet process priors for Gaussian process models
    • MR2745498
    • SAVITSKY, T. and VANNUCCI, M. (2010). Spiked Dirichlet process priors for Gaussian process models. J. Probab. Stat. Art. ID 201489, 14. MR2745498
    • (2010) J. Probab. Stat. , pp. 14
    • Savitsky, T.1    Vannucci, M.2
  • 45
    • 82955228156 scopus 로고    scopus 로고
    • Variable selection for nonparametric Gaussian process priors: Models and computational strategies
    • MR2849913
    • SAVITSKY, T., VANNUCCI, M. and SHA, N. (2011). Variable selection for nonparametric Gaussian process priors: Models and computational strategies. Statist. Sci. 26 130–149. MR2849913
    • (2011) Statist. Sci , vol.26 , pp. 130-149
    • Savitsky, T.1    Vannucci, M.2    Sha, N.3
  • 46
    • 0000720609 scopus 로고
    • A constructive definition of Dirichlet priors
    • MR1309433
    • SETHURAMAN, J. (1994). A constructive definition of Dirichlet priors. Statist. Sinica 4 639–650. MR1309433
    • (1994) Statist. Sinica , vol.4 , pp. 639-650
    • Sethuraman, J.1
  • 47
    • 34249029761 scopus 로고    scopus 로고
    • Spatial Bayesian variable selection with application to func-tional magnetic resonance imaging
    • MR2370843
    • SMITH, M. and FAHRMEIR, L. (2007). Spatial Bayesian variable selection with application to func-tional magnetic resonance imaging. J. Amer. Statist. Assoc. 102 417–431. MR2370843
    • (2007) J. Amer. Statist. Assoc , vol.102 , pp. 417-431
    • Smith, M.1    Fahrmeir, L.2
  • 48
    • 61449120189 scopus 로고    scopus 로고
    • Modified test statistics by inter-voxel variance shrinkage with an application to fMRI
    • SU, S., CAFFO, B., GARRETT-MAYER, E. and BASSETT, S. (2009). Modified test statistics by inter-voxel variance shrinkage with an application to fMRI. Biostatistics 10 219–227.
    • (2009) Biostatistics , vol.10 , pp. 219-227
    • Su, S.1    Caffo, B.2    Garrett-Mayer, E.3    Bassett, S.4
  • 51
    • 0036322886 scopus 로고    scopus 로고
    • Automated anatomical labeling of ac-tivations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
    • TZOURIO-MAZOYER, N., LandEAU, B., PAPATHANASSIOU, D., CRIVELLO, F., ETARD, O., DELCROIX, N., MAZOYER, B. and JOLIOT, M. (2002). Automated anatomical labeling of ac-tivations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15 273–289.
    • (2002) Neuroimage , vol.15 , pp. 273-289
    • Tzourio-Mazoyer, N.1    Landeau, B.2    Papathanassiou, D.3    Crivello, F.4    Etard, O.5    Delcroix, N.6    Mazoyer, B.7    Joliot, M.8
  • 52
    • 84901330080 scopus 로고    scopus 로고
    • Brain responses to erotic and other emotional stimuli in breast cancer survivors with and without distress about low sexual desire: A preliminary fmri study
    • VERSACE, F., ENGELMANN, J. M., JACKSON, E. F., SLAPIN, A., CORTESE, K. M., BEVERS, T. B. and SCHOVER, L. R. (2013). Brain responses to erotic and other emotional stimuli in breast cancer survivors with and without distress about low sexual desire: A preliminary fmri study. Brain Imaging Behav. 7 533–542.
    • (2013) Brain Imaging Behav. , vol.7 , pp. 533-542
    • Versace, F.1    Engelmann, J.M.2    Jackson, E.F.3    Slapin, A.4    Cortese, K.M.5    Bevers, T.B.6    Schover, L.R.7
  • 54
    • 1842504499 scopus 로고    scopus 로고
    • Constrained linear basis sets for HRF modelling using variational Bayes
    • WOOLRICH, M. W., BEHRENS, T. and SMITH, S. (2004). Constrained linear basis sets for HRF modelling using variational Bayes. NeuroImage 21 1748–1761.
    • (2004) Neuroimage , vol.21 , pp. 1748-1761
    • Woolrich, M.W.1    Behrens, T.2    Smith, S.3
  • 56
    • 0026829738 scopus 로고
    • Estimation of fractal signals from noisy mea-surements using wavelets
    • WORNELL, G. W. and OPPENHEIM, A. V. (1992). Estimation of fractal signals from noisy mea-surements using wavelets. IEEE Trans. Signal Process. 40 611–623.
    • (1992) IEEE Trans. Signal Process , vol.40 , pp. 611-623
    • Wornell, G.W.1    Oppenheim, A.V.2
  • 57
    • 0029096148 scopus 로고
    • Analysis of fMRI time-series revisited-again
    • WORSLEY, K. J. and FRISTON, K. J. (1995). Analysis of fMRI time-series revisited-again. Neu-roImage 2 173–181.
    • (1995) Neu-Roimage , vol.2 , pp. 173-181
    • Worsley, K.J.1    Friston, K.J.2
  • 58
    • 70449363842 scopus 로고    scopus 로고
    • FMRI analysis through Bayesian variable selection with a spatial prior
    • XIA, J., LIANG, F. and WANG, Y. (2009). FMRI analysis through Bayesian variable selection with a spatial prior. IEEE Int. Symp. on Biomedical Imaging 714–717.
    • (2009) IEEE Int. Symp. On Biomedical Imaging , pp. 714-717
    • Xia, J.1    Liang, F.2    Wang, Y.3
  • 59
    • 70450242686 scopus 로고    scopus 로고
    • Modeling inter-subject variability in fMRI activation location: A Bayesian hierarchical spatial model
    • MR2756491
    • XU, L., JOHNSON, T. D., NICHOLS, T. E. and NEE, D. E. (2009). Modeling inter-subject variability in fMRI activation location: A Bayesian hierarchical spatial model. Biometrics 65 1041–1051. MR2756491
    • (2009) Biometrics , vol.65 , pp. 1041-1051
    • Xu, L.1    Johnson, T.D.2    Nichols, T.E.3    Nee, D.E.4
  • 60
    • 79955691941 scopus 로고    scopus 로고
    • Parallel inference for latent dirichlet allocation on graphics processing units
    • YAN, F., XU, N. and QI, Y. (2009). Parallel inference for latent dirichlet allocation on graphics processing units. In Advances in Neural Information Processing Systems 2134–2142.
    • (2009) In Advances in Neural Information Processing Systems , pp. 2134-2142
    • Yan, F.1    Xu, N.2    Qi, Y.3
  • 61
    • 84899692109 scopus 로고    scopus 로고
    • A spatio-temporal nonpara-metric Bayesian variable selection model of fMRI data for clustering correlated time courses
    • ZHANG, L., GUINDANI, M., VERSACE, F. and VANNUCCI, M. (2014). A spatio-temporal nonpara-metric Bayesian variable selection model of fMRI data for clustering correlated time courses. NeuroImage 95 162–175.
    • (2014) Neuroimage , vol.95 , pp. 162-175
    • Zhang, L.1    Guindani, M.2    Versace, F.3    Vannucci, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.