메뉴 건너뛰기




Volumn 6, Issue 3, 2013, Pages 1758-1789

A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion

Author keywords

Block coordinate descent; Block multiconvex; Kurdyka ojasiewicz inequality; Matrix completion; Nash equilibrium; Nonnegative matrix and tensor factorization; Proximal gradient method; Tensor completion

Indexed keywords

BLOCK COORDINATE DESCENTS; BLOCK MULTICONVEX; MATRIX COMPLETION; NASH EQUILIBRIA; NON-NEGATIVE MATRIX AND TENSOR FACTORIZATIONS; TENSOR COMPLETION;

EID: 84885030988     PISSN: None     EISSN: 19364954     Source Type: Journal    
DOI: 10.1137/120887795     Document Type: Review
Times cited : (1131)

References (79)
  • 1
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • M. Aharon, M. Elad, and A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans. Signal Process., 54 (2006), pp. 4311-4322.
    • (2006) IEEE Trans. Signal Process , vol.54 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 3
    • 45749101721 scopus 로고    scopus 로고
    • On the convergence of the proximal algorithm for nonsmooth functions involving analytic features
    • H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features, Math. Program., 116 (2009), pp. 5-16.
    • (2009) Math. Program , vol.116 , pp. 5-16
    • Attouch, H.1    Bolte, J.2
  • 4
    • 77953092582 scopus 로고    scopus 로고
    • Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality
    • H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality, Math. Oper. Res., 35 (2010), pp. 438-457.
    • (2010) Math. Oper. Res , vol.35 , pp. 438-457
    • Attouch, H.1    Bolte, J.2    Redont, P.3    Soubeyran, A.4
  • 6
    • 49749096526 scopus 로고    scopus 로고
    • Efficient MATLAB computations with sparse and factored tensors
    • B. W. Bader and T. G. Kolda, Efficient MATLAB computations with sparse and factored tensors, SIAM J. Sci. Comput., 30 (2007), pp. 205-231.
    • (2007) SIAM J. Sci. Comput , vol.30 , pp. 205-231
    • Bader, B.W.1    Kolda, T.G.2
  • 8
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), pp. 183-202.
    • (2009) SIAM J. Imaging Sci , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 10
    • 44649170241 scopus 로고    scopus 로고
    • SZ and CMB reconstruction using generalized morphological component analysis
    • J. Bobin, Y. Moudden, J. L. Starck, J. Fadili, and N. Aghanim, SZ and CMB reconstruction using generalized morphological component analysis, Stat. Methodol., 5 (2008), pp. 307-317.
    • (2008) Stat. Methodol , vol.5 , pp. 307-317
    • Bobin, J.1    Moudden, Y.2    Starck, J.L.3    Fadili, J.4    Aghanim, N.5
  • 11
    • 0003313986 scopus 로고    scopus 로고
    • Real Algebraic Geometry
    • Springer-Verlag, Berlin
    • J. Bochnak, M. Coste, and M.-F. Roy, Real Algebraic Geometry, Ergeb. Math. Grenzgeb. (3) 36, Springer-Verlag, Berlin, 1998.
    • (1998) Ergeb. Math. Grenzgeb , vol.36 , Issue.3
    • Bochnak, J.1    Coste, M.2    Roy, M.-F.3
  • 12
    • 0035501128 scopus 로고    scopus 로고
    • Underdetermined blind source separation using sparse representations
    • P. Bofill and M. Zibulevsky, Underdetermined blind source separation using sparse representations, Signal Process., 81 (2001), pp. 2353-2362.
    • (2001) Signal Process , vol.81 , pp. 2353-2362
    • Bofill, P.1    Zibulevsky, M.2
  • 13
    • 36249023228 scopus 로고    scopus 로고
    • The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems
    • J. Bolte, A. Daniilidis, and A. Lewis, The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems, SIAM J. Optim., 17 (2007), pp. 1205-1223.
    • (2007) SIAM J. Optim , vol.17 , pp. 1205-1223
    • Bolte, J.1    Daniilidis, A.2    Lewis, A.3
  • 14
    • 35348955638 scopus 로고    scopus 로고
    • Clarke subgradients of stratifiable functions
    • J. Bolte, A. Daniilidis, A. Lewis, and M. Shiota, Clarke subgradients of stratifiable functions, SIAM J. Optim., 18 (2007), pp. 556-572.
    • (2007) SIAM J. Optim , vol.18 , pp. 556-572
    • Bolte, J.1    Daniilidis, A.2    Lewis, A.3    Shiota, M.4
  • 15
    • 0035273106 scopus 로고    scopus 로고
    • Atomic decomposition by basis pursuit
    • S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis pursuit, SIAMRev., 43 (2001), pp. 129-159.
    • (2001) SIAMRev , vol.43 , pp. 129-159
    • Chen, S.S.1    Donoho, D.L.2    Saunders, M.A.3
  • 16
    • 57149147265 scopus 로고    scopus 로고
    • Non-negative matrix factorization for semi-supervised data clustering
    • Y. Chen, M. Rege, M. Dong, and J. Hua, Non-negative matrix factorization for semi-supervised data clustering, Knowl. Inf. Syst., 17 (2008), pp. 355-379.
    • (2008) Knowl. Inf. Syst , vol.17 , pp. 355-379
    • Chen, Y.1    Rege, M.2    Dong, M.3    Hua, J.4
  • 19
    • 74449093261 scopus 로고    scopus 로고
    • Fast local algorithms for large scale nonnegative matrix and tensor factorizations
    • A. Cichocki and A.-H. Phan, Fast local algorithms for large scale nonnegative matrix and tensor factorizations, IEICE Trans. Fundamentals, 92 (2009), pp. 708-721.
    • (2009) IEICE Trans. Fundamentals , vol.92 , pp. 708-721
    • Cichocki, A.1    Phan, A.-H.2
  • 20
    • 49149085985 scopus 로고    scopus 로고
    • When does non-negative matrix factorization give a correct decomposition into parts?
    • in, MIT Press, Cambridge, MA
    • D. Donoho and V. Stodden, When does non-negative matrix factorization give a correct decomposition into parts?, in Advances in Neural Information Processing Systems 16, MIT Press, Cambridge, MA, 2004, pp. 1141-1149.
    • (2004) Advances in Neural Information Processing Systems , vol.16 , pp. 1141-1149
    • Donoho, D.1    Stodden, V.2
  • 21
    • 47249112550 scopus 로고    scopus 로고
    • Computing non-negative tensor factorizations
    • M. P. Friedlander and K. Hatz, Computing non-negative tensor factorizations, Optim. Methods Softw., 23 (2008), pp. 631-647.
    • (2008) Optim. Methods Softw , vol.23 , pp. 631-647
    • Friedlander, M.P.1    Hatz, K.2
  • 22
    • 0033904057 scopus 로고    scopus 로고
    • On the convergence of the block nonlinear Gauss-Seidel method under convex constraints
    • L. Grippo and M. Sciandrone, On the convergence of the block nonlinear Gauss-Seidel method under convex constraints, Oper. Res. Lett., 26 (2000), pp. 127-136.
    • (2000) Oper. Res. Lett , vol.26 , pp. 127-136
    • Grippo, L.1    Sciandrone, M.2
  • 23
    • 0023860607 scopus 로고
    • A successive projection method
    • S. P. Han, A successive projection method, Math. Programming, 40 (1988), pp. 1-14.
    • (1988) Math. Programming , vol.40 , pp. 1-14
    • Han, S.P.1
  • 24
    • 0007136851 scopus 로고
    • A quadratic programming procedure
    • C. Hildreth, A quadratic programming procedure, Naval Res. Logistics Quart., 4 (1957), pp. 79-85.
    • (1957) Naval Res. Logistics Quart , vol.4 , pp. 79-85
    • Hildreth, C.1
  • 25
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. O. Hoyer, Non-negative matrix factorization with sparseness constraints, J. Mach. Learn. Res., 5 (2004), pp. 1457-1469.
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 27
    • 0026191274 scopus 로고
    • Blind separation of sources, Part 1: An adaptive algorithm based on neuromimetic architecture
    • C. Jutten and J. Herault, Blind separation of sources, Part 1: An adaptive algorithm based on neuromimetic architecture, Signal Process., 24 (1991), pp. 1-10.
    • (1991) Signal Process , vol.24 , pp. 1-10
    • Jutten, C.1    Herault, J.2
  • 29
    • 0033646780 scopus 로고    scopus 로고
    • Towards a standardized notation and terminology in multiway analysis
    • H. A. L. Kiers, Towards a standardized notation and terminology in multiway analysis, J. Chemometrics, 14 (2000), pp. 105-122.
    • (2000) J. Chemometrics , vol.14 , pp. 105-122
    • Kiers, H.A.L.1
  • 30
    • 67349093319 scopus 로고    scopus 로고
    • Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method
    • H. Kim and H. Park, Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 713-730.
    • (2008) SIAM J. Matrix Anal. Appl , vol.30 , pp. 713-730
    • Kim, H.1    Park, H.2
  • 33
    • 84949178333 scopus 로고    scopus 로고
    • Fast nonnegative tensor factorization with an active-set-like method
    • in, Springer, London
    • J. Kim and H. Park, Fast nonnegative tensor factorization with an active-set-like method, in High-Performance Scientific Computing, Springer, London, 2012, pp. 311-326.
    • (2012) High-Performance Scientific Computing , pp. 311-326
    • Kim, J.1    Park, H.2
  • 35
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), pp. 455-500.
    • (2009) SIAM Rev , vol.51 , pp. 455-500
    • Kolda, T.G.1    Bader, B.W.2
  • 36
    • 0032385816 scopus 로고    scopus 로고
    • On gradients of functions definable in o-minimal structures
    • K. Kurdyka, On gradients of functions definable in o-minimal structures, Ann. Inst. Fourier (Grenoble), 48 (1998), pp. 769-783.
    • (1998) Ann. Inst. Fourier (Grenoble) , vol.48 , pp. 769-783
    • Kurdyka, K.1
  • 37
    • 79957452717 scopus 로고    scopus 로고
    • q minimization with 0 < q ≤ 1 for sparse solution of underdetermined linear systems
    • q minimization with 0 < q ≤ 1 for sparse solution of underdetermined linear systems, SIAM J. Optim., 21 (2011), pp. 82-101.
    • (2011) SIAM J. Optim , vol.21 , pp. 82-101
    • Lai, M.-J.1    Wang, J.2
  • 38
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, 401 (1999), pp. 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 39
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • in, MIT Press, Cambridge, MA
    • D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, in Advances in Neural Information Processing Systems 13, MIT Press, Cambridge, MA, 2001, pp. 556-562.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 42
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • C.-J. Lin, Projected gradient methods for nonnegative matrix factorization, Neural Comput., 19 (2007), pp. 2756-2779.
    • (2007) Neural Comput , vol.19 , pp. 2756-2779
    • Lin, C.-J.1
  • 44
    • 80052781908 scopus 로고    scopus 로고
    • Sparse non-negative tensor factorization using columnwise coordinate descent
    • J. Liu, J. Liu, P. Wonka, and J. Ye, Sparse non-negative tensor factorization using columnwise coordinate descent, Pattern Recogn., 45 (2012), pp. 649-656.
    • (2012) Pattern Recogn , vol.45 , pp. 649-656
    • Liu, J.1    Liu, J.2    Wonka, P.3    Ye, J.4
  • 46
    • 0001228050 scopus 로고
    • Sur la géométrie semi-et sous-analytique
    • S. Łojasiewicz, Sur la géométrie semi-et sous-analytique, Ann. Inst. Fourier (Grenoble), 43 (1993), pp. 1575-1595.
    • (1993) Ann. Inst. Fourier (Grenoble) , vol.43 , pp. 1575-1595
    • Łojasiewicz, S.1
  • 48
    • 21344480786 scopus 로고
    • Error bounds and convergence analysis of feasible descent methods: A general approach
    • Z. Q. Luo and P. Tseng, Error bounds and convergence analysis of feasible descent methods: A general approach, Ann. Oper. Res., 46 (1993), pp. 157-178.
    • (1993) Ann. Oper. Res , vol.46 , pp. 157-178
    • Luo, Z.Q.1    Tseng, P.2
  • 50
    • 0023422251 scopus 로고
    • Parallel successive overrelaxation methods for symmetric linear complementarity problems and linear programs
    • O. L. Mangasarian and R. Leone, Parallel successive overrelaxation methods for symmetric linear complementarity problems and linear programs, J. Optim. Theory Appl., 54 (1987), pp. 437-446.
    • (1987) J. Optim. Theory Appl , vol.54 , pp. 437-446
    • Mangasarian, O.L.1    Leone, R.2
  • 51
    • 48249100881 scopus 로고    scopus 로고
    • Algorithms for sparse nonnegative Tucker decompositions
    • M. Mørup, L. K. Hansen, and S. M. Arnfred, Algorithms for sparse nonnegative Tucker decompositions, Neural Comput., 20 (2008), pp. 2112-2131.
    • (2008) Neural Comput , vol.20 , pp. 2112-2131
    • Mørup, M.1    Hansen, L.K.2    Arnfred, S.M.3
  • 53
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • P. Paatero and U. Tapper, Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5 (1994), pp. 111-126.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 54
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • V. P. Pauca, J. Piper, and R. J. Plemmons, Nonnegative matrix factorization for spectral data analysis, Linear Algebra Appl., 416 (2006), pp. 29-47.
    • (2006) Linear Algebra Appl , vol.416 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 56
    • 0001258795 scopus 로고
    • On search directions for minimization algorithms
    • M. J. D. Powell, On search directions for minimization algorithms, Math. Programming, 4 (1973), pp. 193-201.
    • (1973) Math. Programming , vol.4 , pp. 193-201
    • Powell, M.J.D.1
  • 57
    • 84880570485 scopus 로고    scopus 로고
    • A unified convergence analysis of block successive minimization methods for nonsmooth optimization
    • M. Razaviyayn, M. Hong, and Z.-Q. Luo, A unified convergence analysis of block successive minimization methods for nonsmooth optimization, SIAM J. Optim., 23 (2013), pp. 1126-1153.
    • (2013) SIAM J. Optim , vol.23 , pp. 1126-1153
    • Razaviyayn, M.1    Hong, M.2    Luo, Z.-Q.3
  • 58
    • 78549288866 scopus 로고    scopus 로고
    • Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
    • B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 52 (2010), pp. 471-501.
    • (2010) SIAM Rev , vol.52 , pp. 471-501
    • Recht, B.1    Fazel, M.2    Parrilo, P.A.3
  • 59
    • 0016985417 scopus 로고
    • Monotone operators and the proximal point algorithm
    • R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), pp. 877-898.
    • (1976) SIAM J. Control Optim , vol.14 , pp. 877-898
    • Rockafellar, R.T.1
  • 61
    • 0007140895 scopus 로고
    • On the convergence of sequential minimization algorithms
    • R. W. H Sargent and D. J. Sebastian, On the convergence of sequential minimization algorithms, J. Optim. Theory Appl., 12 (1973), pp. 567-575.
    • (1973) J. Optim. Theory Appl , vol.12 , pp. 567-575
    • Sargent, R.W.H.1    Sebastian, D.J.2
  • 62
    • 27644498167 scopus 로고    scopus 로고
    • Principal component analysis and blind source separation of modulated sources for electro-mechanical systems diagnostic
    • C. Servière and P. Fabry, Principal component analysis and blind source separation of modulated sources for electro-mechanical systems diagnostic, Mech. Syst. Signal Process., 19 (2005), pp. 1293-1311.
    • (2005) Mech. Syst. Signal Process , vol.19 , pp. 1293-1311
    • Servière, C.1    Fabry, P.2
  • 63
    • 31844432834 scopus 로고    scopus 로고
    • Non-negative tensor factorization with applications to statistics and computer vision
    • in, ACM, New York
    • A. Shashua and T. Hazan, Non-negative tensor factorization with applications to statistics and computer vision, in Proceedings of the 22nd International Conference on Machine Learning, ACM, New York, 2005, pp. 792-799.
    • (2005) Proceedings of the 22nd International Conference on Machine Learning , pp. 792-799
    • Shashua, A.1    Hazan, T.2
  • 64
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996), pp. 267-288.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 65
    • 34250084102 scopus 로고
    • Dual coordinate ascent methods for non-strictly convex minimization
    • P. Tseng, Dual coordinate ascent methods for non-strictly convex minimization, Math. Programming, 59 (1993), pp. 231-247.
    • (1993) Math. Programming , vol.59 , pp. 231-247
    • Tseng, P.1
  • 66
    • 0035533631 scopus 로고    scopus 로고
    • Convergence of a block coordinate descent method for nondifferentiable minimization
    • P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization, J. Optim. Theory Appl., 109 (2001), pp. 475-494.
    • (2001) J. Optim. Theory Appl , vol.109 , pp. 475-494
    • Tseng, P.1
  • 67
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • P. Tseng and S. Yun, A coordinate gradient descent method for nonsmooth separable minimization, Math. Program., 117 (2009), pp. 387-423.
    • (2009) Math. Program , vol.117 , pp. 387-423
    • Tseng, P.1    Yun, S.2
  • 68
    • 0013953617 scopus 로고
    • Some mathematical notes on three-mode factor analysis
    • L. R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31 (1966), pp. 279-311.
    • (1966) Psychometrika , vol.31 , pp. 279-311
    • Tucker, L.R.1
  • 69
    • 38849091390 scopus 로고    scopus 로고
    • Hybrid huberized support vector machines for microarray classification and gene selection
    • L. Wang, J. Zhu, and H. Zou, Hybrid huberized support vector machines for microarray classification and gene selection, Bioinformatics, 24 (2008), pp. 412-419.
    • (2008) Bioinformatics , vol.24 , pp. 412-419
    • Wang, L.1    Zhu, J.2    Zou, H.3
  • 70
    • 0007131341 scopus 로고
    • Minimizing certain convex functions
    • J. Warga, Minimizing certain convex functions, J. Soc. Indust. Appl. Math., 11 (1963), pp. 588-593.
    • (1963) J. Soc. Indust. Appl. Math , vol.11 , pp. 588-593
    • Warga, J.1
  • 71
    • 0034861343 scopus 로고    scopus 로고
    • Positive tensor factorization
    • M. Welling and M. Weber, Positive tensor factorization, Pattern Recogn. Lett., 22 (2001), pp. 1255-1261.
    • (2001) Pattern Recogn. Lett , vol.22 , pp. 1255-1261
    • Welling, M.1    Weber, M.2
  • 74
    • 84862791611 scopus 로고    scopus 로고
    • An alternating direction algorithm for matrix completion with nonnegative factors
    • Y. Xu, W. Yin, Z. Wen, and Y. Zhang, An alternating direction algorithm for matrix completion with nonnegative factors, Front. Math. China, 7 (2012), pp. 365-384.
    • (2012) Front. Math. China , vol.7 , pp. 365-384
    • Xu, Y.1    Yin, W.2    Wen, Z.3    Zhang, Y.4
  • 75
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables, J. R. Stat. Soc. Ser. B Stat. Methodol., 68 (2006), pp. 49-67.
    • (2006) J. R. Stat. Soc. Ser. B Stat. Methodol , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 76
    • 77956967694 scopus 로고    scopus 로고
    • Algorithms for nonnegative tensor factorization
    • in, Springer, London
    • S. Zafeiriou, Algorithms for nonnegative tensor factorization, in Tensors in Image Processing and Computer Vision, Springer, London, 2009, pp. 105-124.
    • (2009) Tensors in Image Processing and Computer Vision , pp. 105-124
    • Zafeiriou, S.1
  • 77
    • 60549111308 scopus 로고    scopus 로고
    • Tensor methods for hyperspectral data analysis: A space object material identification study
    • Q. Zhang, H. Wang, R. J. Plemmons, and V. P. Pauca, Tensor methods for hyperspectral data analysis: A space object material identification study, J. Opt. Soc. Amer. A, 25 (2008), pp. 3001-3012.
    • (2008) J. Opt. Soc. Amer. A , vol.25 , pp. 3001-3012
    • Zhang, Q.1    Wang, H.2    Plemmons, R.J.3    Pauca, V.P.4
  • 78
    • 84862797996 scopus 로고    scopus 로고
    • Technical report TR10-03, Department of Computational and Applied Mathematics, Rice University, Houston, TX
    • Y. Zhang, An Alternating Direction Algorithm for Nonnegative Matrix Factorization, Technical report TR10-03, Department of Computational and Applied Mathematics, Rice University, Houston, TX, 2010.
    • (2010) An Alternating Direction Algorithm for Nonnegative Matrix Factorization
    • Zhang, Y.1
  • 79
    • 0000660321 scopus 로고    scopus 로고
    • Blind source separation by sparse decomposition in a signal dictionary
    • M. Zibulevsky and B. A. Pearlmutter, Blind source separation by sparse decomposition in a signal dictionary, Neural Comput., 13 (2001), pp. 863-882.
    • (2001) Neural Comput , vol.13 , pp. 863-882
    • Zibulevsky, M.1    Pearlmutter, B.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.