메뉴 건너뛰기




Volumn 80, Issue , 2016, Pages 53-63

Large-scale chromatin structure-function relationships during the cell cycle and development: Insights from replication timing

Author keywords

[No Author keywords available]

Indexed keywords

CELL CYCLE; CELL MATURATION; CHROMATIN STRUCTURE; CHROMOSOME BAND; CHROMOSOME STRUCTURE; CHROMOSOMES AND CHROMOSOMAL PHENOMENA; CONFERENCE PAPER; DNA REPLICATION ORIGIN; DNA REPLICATION TIMING; EPIGENETICS; GENE EXPRESSION; GENOME-WIDE ASSOCIATION STUDY; GENOMICS; HUMAN; NONHUMAN; PRIORITY JOURNAL; REGULATORY MECHANISM; TOPOLOGICALLY ASSOCIATING DOMAIN; ARTICLE; CELL AGGREGATION; CELL COMPARTMENTALIZATION; GENE MAPPING; LARGE SCALE PRODUCTION; SPATIOTEMPORAL ANALYSIS; ANIMAL; CHROMATIN; CHROMATIN ASSEMBLY AND DISASSEMBLY; CHROMOSOME; DNA REPLICATION; METABOLISM; STRUCTURE ACTIVITY RELATION;

EID: 84978655886     PISSN: 00917451     EISSN: 19434456     Source Type: Book Series    
DOI: 10.1101/sqb.2015.80.027284     Document Type: Conference Paper
Times cited : (49)

References (111)
  • 1
    • 0036135617 scopus 로고    scopus 로고
    • Replication initiation patterns in the b-globin loci of totipotent and differentiated murine cells: Evidence for multiple initiation regions
    • Aladjem MI, Rodewald LW, Lin CM, Bowman S, Cimbora DM, Brody LL, Epner EM, Groudine M, Wahl GM. 2002. Replication initiation patterns in the b-globin loci of totipotent and differentiated murine cells: Evidence for multiple initiation regions. Mol Cell Biol 22: 442-452.
    • (2002) Mol Cell Biol , vol.22 , pp. 442-452
    • Aladjem, M.I.1    Rodewald, L.W.2    Lin, C.M.3    Bowman, S.4    Cimbora, D.M.5    Brody, L.L.6    Epner, E.M.7    Groudine, M.8    Wahl, G.M.9
  • 2
    • 0013794751 scopus 로고
    • Asynchronous replication of DNA in a heterochromatic set of chromosomes in Pseudococcus obscurus
    • Baer D. 1965. Asynchronous replication of DNA in a heterochromatic set of chromosomes in Pseudococcus obscurus. Genetics 52: 275-285.
    • (1965) Genetics , vol.52 , pp. 275-285
    • Baer, D.1
  • 4
    • 84863872155 scopus 로고    scopus 로고
    • Replication timing and its emergence from stochastic processes
    • Bechhoefer J, Rhind N. 2012. Replication timing and its emergence from stochastic processes. Trends Genet 28: 374-381.
    • (2012) Trends Genet , vol.28 , pp. 374-381
    • Bechhoefer, J.1    Rhind, N.2
  • 5
    • 0034008103 scopus 로고    scopus 로고
    • Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci
    • Berezney R, Dubey DD, Huberman JA. 2000. Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma 108: 471-484.
    • (2000) Chromosoma , vol.108 , pp. 471-484
    • Berezney, R.1    Dubey, D.D.2    Huberman, J.A.3
  • 6
    • 33645453532 scopus 로고
    • Correlation of genetic activity, heterochromatization, and RNA metabolism
    • Berlowitz L. 1965. Correlation of genetic activity, heterochromatization, and RNA metabolism. Proc Natl Acad Sci 53: 68-73.
    • (1965) Proc Natl Acad Sci , vol.53 , pp. 68-73
    • Berlowitz, L.1
  • 8
    • 64049108074 scopus 로고    scopus 로고
    • A model for DNA replication showing how dormant origins safeguard against replication fork failure
    • Blow JJ, Ge XQ. 2009. A model for DNA replication showing how dormant origins safeguard against replication fork failure. EMBO Rep 10: 406-412.
    • (2009) EMBO Rep , vol.10 , pp. 406-412
    • Blow, J.J.1    Ge, X.Q.2
  • 11
    • 0027604577 scopus 로고
    • Chromosome bands-Flavours to savour
    • Craig JM, Bickmore WA. 1993. Chromosome bands-Flavours to savour. Bioessays 15: 349-354.
    • (1993) Bioessays , vol.15 , pp. 349-354
    • Craig, J.M.1    Bickmore, W.A.2
  • 12
    • 85027929606 scopus 로고    scopus 로고
    • Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization
    • Denholtz M, Bonora G, Chronis C, Splinter E, de Laat W, Ernst J, Pellegrini M, Plath K. 2013. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 13: 602-616.
    • (2013) Cell Stem Cell , vol.13 , pp. 602-616
    • Denholtz, M.1    Bonora, G.2    Chronis, C.3    Splinter, E.4    de Laat, W.5    Ernst, J.6    Pellegrini, M.7    Plath, K.8
  • 14
    • 84865563527 scopus 로고    scopus 로고
    • Genome-wide analysis of replication timing in mammalian cells: Troubleshooting problems encountered when comparing different cell types
    • Dileep V, Didier R, Gilbert DM. 2012. Genome-wide analysis of replication timing in mammalian cells: Troubleshooting problems encountered when comparing different cell types. Methods 57: 165-169.
    • (2012) Methods , vol.57 , pp. 165-169
    • Dileep, V.1    Didier, R.2    Gilbert, D.M.3
  • 15
    • 84938893979 scopus 로고    scopus 로고
    • Topologically associating domains and their long-range contacts are established during early G1 coincident with the establishment of the replication-timing program
    • Dileep V, Ay F, Sima J, Vera DL, Noble WS, Gilbert DM. 2015. Topologically associating domains and their long-range contacts are established during early G1 coincident with the establishment of the replication-timing program. Genome Res 25: 1104-1113.
    • (2015) Genome Res , vol.25 , pp. 1104-1113
    • Dileep, V.1    Ay, F.2    Sima, J.3    Vera, D.L.4    Noble, W.S.5    Gilbert, D.M.6
  • 17
    • 0033369515 scopus 로고    scopus 로고
    • The spatial position and replication timing of chromosomal domains are both established in early G1 phase
    • Dimitrova DS, Gilbert DM. 1999. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell 4: 983-993.
    • (1999) Mol Cell , vol.4 , pp. 983-993
    • Dimitrova, D.S.1    Gilbert, D.M.2
  • 19
    • 84861095603 scopus 로고    scopus 로고
    • Topological domains in mammalian genomes identified by analysis of chromatin interactions
    • Dixon JR, Selvaraj S, Yue F, Kim A, LiY, Shen Y, Hu M, Liu JS, Ren B. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485: 376-380.
    • (2012) Nature , vol.485 , pp. 376-380
    • Dixon, J.R.1    Selvaraj, S.2    Yue, F.3    Kim, A.4    Li, Y.5    Shen, Y.6    Hu, M.7    Liu, J.S.8    Ren, B.9
  • 21
    • 0032716707 scopus 로고    scopus 로고
    • The homeobox gene, Xanf-1, can control both neural differentiation and patterning in the presumptive anterior neurectoderm of the Xenopus laevis embryo
    • Ermakova GV, Alexandrova EM, Kazanskaya OV, Vasiliev OL, SmithMW, Zaraisky AG. 1999. The homeobox gene, Xanf-1, can control both neural differentiation and patterning in the presumptive anterior neurectoderm of the Xenopus laevis embryo. Development 126: 4513-4523.
    • (1999) Development , vol.126 , pp. 4513-4523
    • Ermakova, G.V.1    Alexandrova, E.M.2    Kazanskaya, O.V.3    Vasiliev, O.L.4    Smith, M.W.5    Zaraisky, A.G.6
  • 24
    • 0030964894 scopus 로고    scopus 로고
    • Genome replication in early mouse embryos follows a defined temporal and spatial order
    • Ferreira J, Carmo-Fonseca M. 1997. Genome replication in early mouse embryos follows a defined temporal and spatial order. J Cell Sci 110: 889-897.
    • (1997) J Cell Sci , vol.110 , pp. 889-897
    • Ferreira, J.1    Carmo-Fonseca, M.2
  • 25
    • 0022481322 scopus 로고
    • Temporal order of replication of Xenopus laevis 5S ribosomal RNA genes in somatic cells
    • Gilbert DM. 1986. Temporal order of replication of Xenopus laevis 5S ribosomal RNA genes in somatic cells. Proc Natl Acad Sci 83: 2924-2928.
    • (1986) Proc Natl Acad Sci , vol.83 , pp. 2924-2928
    • Gilbert, D.M.1
  • 26
    • 0035931753 scopus 로고    scopus 로고
    • Nuclear position leaves its mark on replication timing
    • Gilbert DM. 2001. Nuclear position leaves its mark on replication timing. J Cell Biol 152: F11-F15.
    • (2001) J Cell Biol , vol.152 , pp. F11-F15
    • Gilbert, D.M.1
  • 27
    • 0036591890 scopus 로고    scopus 로고
    • Replication timing and transcriptional control: Beyond cause and effect
    • Gilbert DM. 2002. Replication timing and transcriptional control: Beyond cause and effect. Curr Opin Cell Biol 14: 377-383.
    • (2002) Curr Opin Cell Biol , vol.14 , pp. 377-383
    • Gilbert, D.M.1
  • 28
    • 77956879643 scopus 로고    scopus 로고
    • Evaluating genome-scale approaches to eukaryotic DNA replication
    • Gilbert DM. 2010. Evaluating genome-scale approaches to eukaryotic DNA replication. Nat Rev Genet 11: 673-684.
    • (2010) Nat Rev Genet , vol.11 , pp. 673-684
    • Gilbert, D.M.1
  • 35
    • 84911861794 scopus 로고    scopus 로고
    • Genetic variation meets replication origins
    • Hause RJ, Shendure J. 2014. Genetic variation meets replication origins. Cell 159: 973-974.
    • (2014) Cell , vol.159 , pp. 973-974
    • Hause, R.J.1    Shendure, J.2
  • 37
    • 0014141234 scopus 로고
    • An analysis of heterochromatin in maize root tips
    • Himes M. 1967. An analysis of heterochromatin in maize root tips. J Cell Biol 35: 175-181.
    • (1967) J Cell Biol , vol.35 , pp. 175-181
    • Himes, M.1
  • 38
    • 65449178609 scopus 로고    scopus 로고
    • Replication timing as an epigenetic mark
    • Hiratani I, Gilbert DM. 2009. Replication timing as an epigenetic mark. Epigenetics 4: 93-97.
    • (2009) Epigenetics , vol.4 , pp. 93-97
    • Hiratani, I.1    Gilbert, D.M.2
  • 39
    • 10044228269 scopus 로고    scopus 로고
    • Differentiation-induced replication-timing changes are restricted to AT-rich/ long interspersed nuclear element (LINE)-rich isochores
    • Hiratani I, Leskovar A, Gilbert DM. 2004. Differentiation-induced replication-timing changes are restricted to AT-rich/ long interspersed nuclear element (LINE)-rich isochores. Proc Natl Acad Sci 101: 16861-16866.
    • (2004) Proc Natl Acad Sci , vol.101 , pp. 16861-16866
    • Hiratani, I.1    Leskovar, A.2    Gilbert, D.M.3
  • 42
    • 0023193418 scopus 로고
    • Role of replication time in the control of tissue-specific gene expression
    • Holmquist GP. 1987. Role of replication time in the control of tissue-specific gene expression. Am J Hum Genet 40: 151-173.
    • (1987) Am J Hum Genet , vol.40 , pp. 151-173
    • Holmquist, G.P.1
  • 43
    • 0020357520 scopus 로고
    • Characterization of Giemsa dark- and light-band DNA
    • Holmquist G, Gray M, Porter T, Jordan J. 1982. Characterization of Giemsa dark- and light-band DNA. Cell 31: 121-129.
    • (1982) Cell , vol.31 , pp. 121-129
    • Holmquist, G.1    Gray, M.2    Porter, T.3    Jordan, J.4
  • 44
    • 80055027547 scopus 로고    scopus 로고
    • Replication banding patterns in human chromosomes detected using 5-ethynyl-20-deoxyuridine incorporation
    • Hoshi O, Ushiki T. 2011. Replication banding patterns in human chromosomes detected using 5-ethynyl-20-deoxyuridine incorporation. Acta Histochem Cytochem 44: 233-237.
    • (2011) Acta Histochem Cytochem , vol.44 , pp. 233-237
    • Hoshi, O.1    Ushiki, T.2
  • 47
    • 0032559794 scopus 로고    scopus 로고
    • Replicon clusters are stable units of chromosome structure: Evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells
    • Jackson DA, Pombo A. 1998. Replicon clusters are stable units of chromosome structure: Evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol 140: 1285-1295.
    • (1998) J Cell Biol , vol.140 , pp. 1285-1295
    • Jackson, D.A.1    Pombo, A.2
  • 48
    • 0014109563 scopus 로고
    • RNA synthesis in relation to DNA replication in synchronized Chinese hamster cell cultures
    • Klevecz RR, Stubblefield E. 1967. RNA synthesis in relation to DNA replication in synchronized Chinese hamster cell cultures. J Exp Zool 165: 259-268.
    • (1967) J Exp Zool , vol.165 , pp. 259-268
    • Klevecz, R.R.1    Stubblefield, E.2
  • 50
    • 0017611703 scopus 로고
    • Fluorescent probes of chromosome structure and replication
    • Latt SA. 1977. Fluorescent probes of chromosome structure and replication. Can J Genet Cytol 19: 603-623.
    • (1977) Can J Genet Cytol , vol.19 , pp. 603-623
    • Latt, S.A.1
  • 51
    • 33845405316 scopus 로고    scopus 로고
    • DNA replication origin interference increases the spacing between initiation events in human cells
    • Lebofsky R, Heilig R, Sonnleitner M, Weissenbach J, Bensimon A. 2006. DNA replication origin interference increases the spacing between initiation events in human cells. Mol Biol Cell 17: 5337-5345.
    • (2006) Mol Biol Cell , vol.17 , pp. 5337-5345
    • Lebofsky, R.1    Heilig, R.2    Sonnleitner, M.3    Weissenbach, J.4    Bensimon, A.5
  • 53
    • 77953208022 scopus 로고    scopus 로고
    • A comprehensive genome-wide map of autonomously replicating sequences in a naive genome
    • Liachko I, Bhaskar A, Lee C, Chung SC, Tye BK, Keich U. A comprehensive genome-wide map of autonomously replicating sequences in a naive genome. PLoS Genet 6: e1000946.
    • PLoS Genet , vol.6
    • Liachko, I.1    Bhaskar, A.2    Lee, C.3    Chung, S.C.4    Tye, B.K.5    Keich, U.6
  • 55
    • 0344314752 scopus 로고
    • Differential uptake of tritiated thymidine into hetero- and euchromatin in Melanoplus and Secale
    • Lima-de-Faria A. 1959. Differential uptake of tritiated thymidine into hetero- and euchromatin in Melanoplus and Secale. J Biophys Biochem Cytol 6: 457-466.
    • (1959) J Biophys Biochem Cytol , vol.6 , pp. 457-466
    • Lima-de-Faria, A.1
  • 56
  • 60
    • 10644297436 scopus 로고    scopus 로고
    • Coordination of replication and transcription along a Drosophila chromosome
    • MacAlpine DM, Rodríguez HK, Bell SP. 2004. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev 18: 3094-3105.
    • (2004) Genes Dev , vol.18 , pp. 3094-3105
    • MacAlpine, D.M.1    Rodríguez, H.K.2    Bell, S.P.3
  • 61
    • 84887603818 scopus 로고    scopus 로고
    • Replication timing influences DNA copy number determination by array- CGH
    • Manukjan G, Tauscher M, Steinemann D. 2013. Replication timing influences DNA copy number determination by array- CGH. Biotechniques 55: 231-232.
    • (2013) Biotechniques , vol.55 , pp. 231-232
    • Manukjan, G.1    Tauscher, M.2    Steinemann, D.3
  • 62
    • 77954814325 scopus 로고    scopus 로고
    • Interplay between DNA replication and gene expression: A harmonious coexistence
    • Maric C, Prioleau MN. 2010. Interplay between DNA replication and gene expression: A harmonious coexistence. Curr Opin Cell Biol 22: 277-283.
    • (2010) Curr Opin Cell Biol , vol.22 , pp. 277-283
    • Maric, C.1    Prioleau, M.N.2
  • 63
    • 77952343862 scopus 로고    scopus 로고
    • S phase progression in human cells is dictated by the genetic continuity of DNA foci
    • Maya-Mendoza A, Olivares-Chauvet P, Shaw A, Jackson DA. 2010. S phase progression in human cells is dictated by the genetic continuity of DNA foci. PLoS Genet 6: e1000900.
    • (2010) PLoS Genet , vol.6
    • Maya-Mendoza, A.1    Olivares-Chauvet, P.2    Shaw, A.3    Jackson, D.A.4
  • 65
    • 0001577707 scopus 로고
    • The replication of DNA in Escherichia coli
    • Meselson M, Stahl FW. 1958. The replication of DNA in Escherichia coli. Proc Natl Acad Sci 44: 671-682.
    • (1958) Proc Natl Acad Sci , vol.44 , pp. 671-682
    • Meselson, M.1    Stahl, F.W.2
  • 68
    • 84867182048 scopus 로고    scopus 로고
    • Conservation of replication timing reveals global and local regulation of replication origin activity
    • Müller CA, Nieduszynski CA. 2012. Conservation of replication timing reveals global and local regulation of replication origin activity. Genome Res 22: 1953-1962.
    • (2012) Genome Res , vol.22 , pp. 1953-1962
    • Müller, C.A.1    Nieduszynski, C.A.2
  • 69
    • 0022504648 scopus 로고
    • Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus
    • Nakamura H, Morita T, Sato C. 1986. Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus. Exp Cell Res 165: 291-297.
    • (1986) Exp Cell Res , vol.165 , pp. 291-297
    • Nakamura, H.1    Morita, T.2    Sato, C.3
  • 70
    • 0024526184 scopus 로고
    • Mapping replicational sites in the eucaryotic cell nucleus
    • Nakayasu H, Berezney R. 1989. Mapping replicational sites in the eucaryotic cell nucleus. J Cell Biol 108: 1-11.
    • (1989) J Cell Biol , vol.108 , pp. 1-11
    • Nakayasu, H.1    Berezney, R.2
  • 73
    • 0035861512 scopus 로고    scopus 로고
    • Visualization of DNA replication on individual Epstein-Barr virus episomes
    • Norio P, Schildkraut CL. 2001. Visualization of DNA replication on individual Epstein-Barr virus episomes. Science 294: 2361-2364.
    • (2001) Science , vol.294 , pp. 2361-2364
    • Norio, P.1    Schildkraut, C.L.2
  • 74
    • 27944452746 scopus 로고    scopus 로고
    • Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development
    • Norio P, Kosiyatrakul S, Yang Q, Guan Z, Brown NM, Thomas S, Riblet R, Schildkraut CL. 2005. Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol Cell 20: 575-587.
    • (2005) Mol Cell , vol.20 , pp. 575-587
    • Norio, P.1    Kosiyatrakul, S.2    Yang, Q.3    Guan, Z.4    Brown, N.M.5    Thomas, S.6    Riblet, R.7    Schildkraut, C.L.8
  • 75
    • 0026596327 scopus 로고
    • Dynamic organization of DNA replication in mammalian cell nuclei: Spatially and temporally defined replication of chromosomespecific a-satellite DNA sequences
    • O'Keefe RT, Henderson SC, Spector DL. 1992. Dynamic organization of DNA replication in mammalian cell nuclei: Spatially and temporally defined replication of chromosomespecific a-satellite DNA sequences. J Cell Biol 116: 1095-1110.
    • (1992) J Cell Biol , vol.116 , pp. 1095-1110
    • O'Keefe, R.T.1    Henderson, S.C.2    Spector, D.L.3
  • 79
    • 80855157444 scopus 로고    scopus 로고
    • DNA replication timing is maintained genome-wide in primary human myoblasts independent of D4Z4 contraction in FSH muscular dystrophy
    • Pope BD, Tsumagari K, Battaglia D, Ryba T, Hiratani I, Ehrlich M, Gilbert DM. 2011. DNA replication timing is maintained genome-wide in primary human myoblasts independent of D4Z4 contraction in FSH muscular dystrophy. PLoS One 6: e27413.
    • (2011) PLoS One , vol.6
    • Pope, B.D.1    Tsumagari, K.2    Battaglia, D.3    Ryba, T.4    Hiratani, I.5    Ehrlich, M.6    Gilbert, D.M.7
  • 85
    • 77952994784 scopus 로고    scopus 로고
    • Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types
    • Ryba T, Hiratani I, Lu J, Itoh M, Kulik M, Zhang J, Dalton S, Gilbert DM, Schulz TC, Robins AJ, et al. 2010. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res 20: 761-770.
    • (2010) Genome Res , vol.20 , pp. 761-770
    • Ryba, T.1    Hiratani, I.2    Lu, J.3    Itoh, M.4    Kulik, M.5    Zhang, J.6    Dalton, S.7    Gilbert, D.M.8    Schulz, T.C.9    Robins, A.J.10
  • 86
    • 79958158210 scopus 로고    scopus 로고
    • Genome-scale analysis of replication timing: From bench to bioinformatics.
    • Ryba T, Battaglia D, Pope BD, Hiratani I, Gilbert DM. 2011a. Genome-scale analysis of replication timing: From bench to bioinformatics. Nat Protoc 6: 870-895.
    • (2011) Nat Protoc , vol.6 , pp. 870-895
    • Ryba, T.1    Battaglia, D.2    Pope, B.D.3    Hiratani, I.4    Gilbert, D.M.5
  • 89
    • 9444269829 scopus 로고    scopus 로고
    • Stable chromosomal units determine the spatial and temporal organization of DNA replication
    • Sadoni N, Cardoso MC, Stelzer EH, Leonhardt H, Zink D. Stable chromosomal units determine the spatial and temporal organization of DNA replication. J Cell Sci 117: 5353-5365.
    • J Cell Sci , vol.117 , pp. 5353-5365
    • Sadoni, N.1    Cardoso, M.C.2    Stelzer, E.H.3    Leonhardt, H.4    Zink, D.5
  • 90
    • 0036842221 scopus 로고    scopus 로고
    • Genome-wide DNA replication profile for Drosophila melanogaster: A link between transcription and replication timing
    • Schübeler D, Scalzo D, Kooperberg C, van Steensel B, Delrow J, Groudine M. 2002. Genome-wide DNA replication profile for Drosophila melanogaster: A link between transcription and replication timing. Nat Genet 32: 438-442.
    • (2002) Nat Genet , vol.32 , pp. 438-442
    • Schübeler, D.1    Scalzo, D.2    Kooperberg, C.3    van Steensel, B.4    Delrow, J.5    Groudine, M.6
  • 92
    • 77956672597 scopus 로고    scopus 로고
    • Single-molecule analysis reveals changes in the DNA replication program for the POU5F1 locus upon human embryonic stem cell differentiation
    • Schultz SS, Desbordes SC, Du Z, Kosiyatrakul S, Lipchina I, Studer L, Schildkraut CL. 2010. Single-molecule analysis reveals changes in the DNA replication program for the POU5F1 locus upon human embryonic stem cell differentiation. Mol Cell Biol 30: 4521-4534.
    • (2010) Mol Cell Biol , vol.30 , pp. 4521-4534
    • Schultz, S.S.1    Desbordes, S.C.2    Du, Z.3    Kosiyatrakul, S.4    Lipchina, I.5    Studer, L.6    Schildkraut, C.L.7
  • 94
    • 61849177618 scopus 로고    scopus 로고
    • Chromatin state marks cell-type- and gender- specific replication of the Drosophila genome
    • Schwaiger M, Stadler MB, Bell O, Kohler H, Oakeley EJ, Schubeler D. 2009. Chromatin state marks cell-type- and gender- specific replication of the Drosophila genome. Genes Dev 23: 589-601.
    • (2009) Genes Dev , vol.23 , pp. 589-601
    • Schwaiger, M.1    Stadler, M.B.2    Bell, O.3    Kohler, H.4    Oakeley, E.J.5    Schubeler, D.6
  • 95
    • 0026511908 scopus 로고
    • Delineation of DNA replication time zones by fluorescence in situ hybridization
    • Selig S, Okumura K, Ward DC, Cedar H. 1992. Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J 11: 1217-1225.
    • (1992) EMBO J , vol.11 , pp. 1217-1225
    • Selig, S.1    Okumura, K.2    Ward, D.C.3    Cedar, H.4
  • 97
    • 0028090269 scopus 로고
    • Replicon clusters may form structurally stable complexes of chromatin and chromosomes
    • Sparvoli E, Levi M, Rossi E. 1994. Replicon clusters may form structurally stable complexes of chromatin and chromosomes. J Cell Sci 107: 3097-3103.
    • (1994) J Cell Sci , vol.107 , pp. 3097-3103
    • Sparvoli, E.1    Levi, M.2    Rossi, E.3
  • 98
    • 0036929125 scopus 로고    scopus 로고
    • DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters.
    • Sporbert A, Gahl A, Ankerhold R, Leonhardt H, Cardoso MC. DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. Mol Cell 10: 1355-1365.
    • Mol Cell , vol.10 , pp. 1355-1365
    • Sporbert, A.1    Gahl, A.2    Ankerhold, R.3    Leonhardt, H.4    Cardoso, M.C.5
  • 99
    • 84864527294 scopus 로고    scopus 로고
    • Chromatin-interaction compartment switch at developmen-tally regulated chromosomal domains reveals an unusual principle of chromatin folding
    • Takebayashi S, Dileep V, Ryba T, Dennis JH, Gilbert DM. 2012. Chromatin-interaction compartment switch at developmen-tally regulated chromosomal domains reveals an unusual principle of chromatin folding. Proc Natl Acad Sci 109: 12574-12579.
    • (2012) Proc Natl Acad Sci , vol.109 , pp. 12574-12579
    • Takebayashi, S.1    Dileep, V.2    Ryba, T.3    Dennis, J.H.4    Gilbert, D.M.5
  • 100
    • 84889993685 scopus 로고    scopus 로고
    • Murine esBAF chromatin remodeling complex subunits BAF250a and Brg1 are necessary to maintain and reprogram pluripotency- specific replication timing of select replication domains
    • Takebayashi S, Lei I, Ryba T, Sasaki T, Dileep V, Battaglia D, Gao X, Fang P, Fan Y, Esteban MA, et al. 2013. Murine esBAF chromatin remodeling complex subunits BAF250a and Brg1 are necessary to maintain and reprogram pluripotency- specific replication timing of select replication domains. Epigenetics Chromatin 6: 42.
    • (2013) Epigenetics Chromatin , vol.6 , pp. 42
    • Takebayashi, S.1    Lei, I.2    Ryba, T.3    Sasaki, T.4    Dileep, V.5    Battaglia, D.6    Gao, X.7    Fang, P.8    Fan, Y.9    Esteban, M.A.10
  • 101
    • 0010465644 scopus 로고
    • The mode of chromosome duplication in Crepis capillaris
    • Taylor JH. 1958. The mode of chromosome duplication in Crepis capillaris. Exp Cell Res 15: 350-357.
    • (1958) Exp Cell Res , vol.15 , pp. 350-357
    • Taylor, J.H.1
  • 102
    • 0001470477 scopus 로고
    • Asynchronous duplication of chromosomes in cultured cells of Chinese hamster
    • Taylor JH. 1960. Asynchronous duplication of chromosomes in cultured cells of Chinese hamster. J Biophys Biochem Cytol 7: 455-463.
    • (1960) J Biophys Biochem Cytol , vol.7 , pp. 455-463
    • Taylor, J.H.1
  • 103
    • 0000268687 scopus 로고
    • The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidinee
    • Taylor JH, Woods PS, Hughes WL. 1957. The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidinee. Proc Natl Acad Sci 43: 122-128.
    • (1957) Proc Natl Acad Sci , vol.43 , pp. 122-128
    • Taylor, J.H.1    Woods, P.S.2    Hughes, W.L.3
  • 108
    • 77957369058 scopus 로고    scopus 로고
    • Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture
    • Yaffe E, Farkash-Amar S, Polten A, Yakhini Z, Tanay A, Simon I. 2010. Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet 6: e1001011.
    • (2010) PLoS Genet , vol.6
    • Yaffe, E.1    Farkash-Amar, S.2    Polten, A.3    Yakhini, Z.4    Tanay, A.5    Simon, I.6
  • 111
    • 0036274021 scopus 로고    scopus 로고
    • Replication and subnuclear location dynamics of the immunoglobulin heavy-chain locus in B-lineage cells
    • Zhou J, Ermakova OV, Riblet R, Birshtein BK, Schildkraut CL. Replication and subnuclear location dynamics of the immunoglobulin heavy-chain locus in B-lineage cells. Mol Cell Biol 22: 4876-4889.
    • Mol Cell Biol , vol.22 , pp. 4876-4889
    • Zhou, J.1    Ermakova, O.V.2    Riblet, R.3    Birshtein, B.K.4    Schildkraut, C.L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.