메뉴 건너뛰기




Volumn 32, Issue 12, 2016, Pages i18-i27

DrugE-Rank: Improving drug-target interaction prediction of new candidate drugs or targets by ensemble learning to rank

Author keywords

[No Author keywords available]

Indexed keywords

DRUG;

EID: 84976517528     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btw244     Document Type: Article
Times cited : (116)

References (37)
  • 1
    • 78951480525 scopus 로고    scopus 로고
    • Recent advances in ligand-based drug design: Relevance and utility of the conformationally sampled pharmacophore approach
    • Acharya,C. et al. (2011) Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach. Curr. Comput.-Aided Drug Des., 7, 10.
    • (2011) Curr. Comput.-Aided Drug Des. , vol.7 , pp. 10
    • Acharya, C.1
  • 2
    • 77952768125 scopus 로고    scopus 로고
    • Ranking chemical structures for drug discovery: A new machine learning approach
    • Agarwal,S. et al. (2010) Ranking chemical structures for drug discovery: a new machine learning approach. J. Chem. Inf. Model., 50, 716-731.
    • (2010) J. Chem. Inf. Model , vol.50 , pp. 716-731
    • Agarwal, S.1
  • 3
    • 69849094133 scopus 로고    scopus 로고
    • Supervised prediction of drug-target interactions using bipartite local models
    • Bleakley,K. and Yamanishi,Y. (2009) Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics, 25, 2397-2403.
    • (2009) Bioinformatics , vol.25 , pp. 2397-2403
    • Bleakley, K.1    Yamanishi, Y.2
  • 4
    • 54949108677 scopus 로고    scopus 로고
    • Pubchem: Integrated platform of small molecules and biological activities
    • Bolton,E.E. et al. (2008) Pubchem: integrated platform of small molecules and biological activities. Ann. Rep. Comput. Chem., 4, 217-241.
    • (2008) Ann. Rep. Comput. Chem. , vol.4 , pp. 217-241
    • Bolton, E.E.1
  • 5
    • 40549098736 scopus 로고    scopus 로고
    • Uniprotkb/swiss-prot
    • Boutet,E. et al. (2007) Uniprotkb/swiss-prot. Methods Mol. Biol., 406, 89-112.
    • (2007) Methods Mol. Biol. , vol.406 , pp. 89-112
    • Boutet, E.1
  • 8
    • 84928196309 scopus 로고    scopus 로고
    • Similarity-based machine learning methods for predicting drug-target interactions: A brief review
    • Ding,H. et al. (2014) Similarity-based machine learning methods for predicting drug-target interactions: a brief review. Brief. Bioinfo., 15, 734-747.
    • (2014) Brief. Bioinfo. , vol.15 , pp. 734-747
    • Ding, H.1
  • 9
    • 84866459051 scopus 로고    scopus 로고
    • Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization
    • Gö nen,M. (2012) Predicting drug-target interactions from chemical and genomic kernels using bayesian matrix factorization. Bioinformatics, 28, 2304-2310.
    • (2012) Bioinformatics , vol.28 , pp. 2304-2310
    • Gö Nen, M.1
  • 10
    • 52749085437 scopus 로고    scopus 로고
    • Protein-ligand interaction prediction: An improved chemogenomics approach
    • Jacob,L. and Vert,J.P. (2008) Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics, 24, 2149-2156.
    • (2008) Bioinformatics , vol.24 , pp. 2149-2156
    • Jacob, L.1    Vert, J.P.2
  • 11
    • 70449634957 scopus 로고    scopus 로고
    • Predicting new molecular targets for known drugs
    • Keiser,M. et al. (2009) Predicting new molecular targets for known drugs. Nature, 462, 175-181.
    • (2009) Nature , vol.462 , pp. 175-181
    • Keiser, M.1
  • 12
    • 84891767304 scopus 로고    scopus 로고
    • Drugbank 4.0: Shedding new light on drug metabolism
    • Law,V. et al. (2014) Drugbank 4.0: shedding new light on drug metabolism. Nucleic Acids Res., 42,-D1, D1091-D1097.
    • (2014) Nucleic Acids Res. , vol.42 , Issue.D1 , pp. D1091-D1097
    • Law, V.1
  • 13
    • 80053390629 scopus 로고    scopus 로고
    • A short introduction to learning to rank
    • Li,H. (2011) A short introduction to learning to rank. IEICE Trans., 94-D, 1854-1862.
    • (2011) IEICE Trans. , vol.94 D , pp. 1854-1862
    • Li, H.1
  • 14
    • 84947588701 scopus 로고    scopus 로고
    • Application of learning to rank to protein remote homology detection
    • Liu,B. et al. (2015a) Application of learning to rank to protein remote homology detection. Bioinformatics, 31, 3492-3498.
    • (2015) Bioinformatics , vol.31 , pp. 3492-3498
    • Liu, B.1
  • 15
    • 84931072047 scopus 로고    scopus 로고
    • Meshlabeler: Improving the accuracy of large-scale mesh indexing by integrating diverse evidence
    • Liu,K. et al. (2015b) Meshlabeler: improving the accuracy of large-scale mesh indexing by integrating diverse evidence. Bioinformatics, 31, 339-347.
    • (2015) Bioinformatics , vol.31 , pp. 339-347
    • Liu, K.1
  • 16
    • 69249119464 scopus 로고    scopus 로고
    • Learning to rank for information retrieval
    • Liu,T.Y. (2009) Learning to rank for information retrieval. Found. Trends Inf. Retriev., 3, 225-331.
    • (2009) Found. Trends Inf. Retriev. , vol.3 , pp. 225-331
    • Liu, T.Y.1
  • 17
    • 84862510972 scopus 로고    scopus 로고
    • Large-scale prediction and testing of drug activity on side-effect targets
    • Lounkine,E. et al. (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature, 486, 361-367.
    • (2012) Nature , vol.486 , pp. 361-367
    • Lounkine, E.1
  • 18
    • 0037107887 scopus 로고    scopus 로고
    • Structure-based virtual screening: An overview
    • Lyne,P.D. (2002) Structure-based virtual screening: an overview. Drug Discov. Today, 7, 1047-1055.
    • (2002) Drug Discov. Today , vol.7 , pp. 1047-1055
    • Lyne, P.D.1
  • 19
    • 84872509876 scopus 로고    scopus 로고
    • Drug-target interaction prediction by learning from local information and neighbors
    • Mei,J.P. et al. (2013) Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics, 29, 238-245.
    • (2013) Bioinformatics , vol.29 , pp. 238-245
    • Mei, J.P.1
  • 20
    • 84906053358 scopus 로고    scopus 로고
    • Drug-target interaction prediction via chemogenomic space: Learning based methods
    • Mousavian,Z. and Masoudi-Nejad,A. (2014) Drug-target interaction prediction via chemogenomic space: learning based methods. Expert Opin. Drug Metabol. Toxicol., 10, 1273-1287.
    • (2014) Expert Opin. Drug Metabol. Toxicol. , vol.10 , pp. 1273-1287
    • Mousavian, Z.1    Masoudi-Nejad, A.2
  • 21
    • 34548128437 scopus 로고    scopus 로고
    • Statistical prediction of protein-chemical interactions based on chemical structure and mass spectrometry data
    • Nagamine,N. and Sakakibara,Y. (2007) Statistical prediction of protein-chemical interactions based on chemical structure and mass spectrometry data. Bioinformatics, 23, 2004-2012.
    • (2007) Bioinformatics , vol.23 , pp. 2004-2012
    • Nagamine, N.1    Sakakibara, Y.2
  • 22
    • 84855840733 scopus 로고    scopus 로고
    • Target-drug interations: First principles and their application to drug discovery
    • Nunez,S. et al. (2012) Target-drug interations: first principles and their application to drug discovery. Drug Discov. Today, 17, 10-22.
    • (2012) Drug Discov. Today , vol.17 , pp. 10-22
    • Nunez, S.1
  • 23
    • 33751547539 scopus 로고    scopus 로고
    • How many drug targets are there
    • Overington,J. et al. (2006) How many drug targets are there. Nat. Rev. Drug Discov., 5, 993-996.
    • (2006) Nat. Rev. Drug Discov. , vol.5 , pp. 993-996
    • Overington, J.1
  • 24
    • 84902435672 scopus 로고    scopus 로고
    • Improved prediction of peptide detectability for targeted proteomics using a rank-based algorithm and organism-specific data
    • Qeli,E. et al. (2014) Improved prediction of peptide detectability for targeted proteomics using a rank-based algorithm and organism-specific data. J. Proteomics., 108, 269-283.
    • (2014) J. Proteomics , vol.108 , pp. 269-283
    • Qeli, E.1
  • 25
    • 79959928391 scopus 로고    scopus 로고
    • Update of profeat: A web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence
    • Rao,H. et al. (2011) Update of profeat: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res., 39(suppl 2), W385-W390.
    • (2011) Nucleic Acids Res. , vol.39 , pp. W385-W390
    • Rao, H.1
  • 26
    • 79952593481 scopus 로고    scopus 로고
    • Structrank: A new approach for ligand-based virtual screening
    • Rathke,F. et al. (2010) Structrank: a new approach for ligand-based virtual screening. J. Chem. Inf. Model., 51, 83-92.
    • (2010) J. Chem. Inf. Model. , vol.51 , pp. 83-92
    • Rathke, F.1
  • 27
    • 84857743319 scopus 로고    scopus 로고
    • Diagnosing the decline in pharmaceutical r&d efficiency
    • Scannell,J. et al. (2012) Diagnosing the decline in pharmaceutical r&d efficiency. Nat. Rev. Drug Discov., 11, 191-200.
    • (2012) Nat. Rev. Drug Discov. , vol.11 , pp. 191-200
    • Scannell, J.1
  • 28
    • 84938423632 scopus 로고    scopus 로고
    • Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering
    • Shi,J. et al. (2015) Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering. Methods, 83, 98-104.
    • (2015) Methods , vol.83 , pp. 98-104
    • Shi, J.1
  • 29
    • 84866467225 scopus 로고    scopus 로고
    • Identification of chemogenomic features from drug-target interaction networks using interpretable classifiers
    • Tabei,Y. et al. (2012) Identification of chemogenomic features from drug-target interaction networks using interpretable classifiers. Bioinformatics, 28, i487-i494.
    • (2012) Bioinformatics , vol.28 , pp. i487-i494
    • Tabei, Y.1
  • 30
    • 80054881553 scopus 로고    scopus 로고
    • Gaussian interaction profile kernels for predicting drug-target interaction
    • van Laarhoven,T. et al. (2011) Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics, 27, 3036-3043.
    • (2011) Bioinformatics , vol.27 , pp. 3036-3043
    • Van Laarhoven, T.1
  • 31
    • 84879466418 scopus 로고    scopus 로고
    • Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile
    • van Laarhoven,T. and Marchiori,E. (2013) Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PloS One, 8, e66952.
    • (2013) PloS One , vol.8 , pp. e66952
    • Van Laarhoven, T.1    Marchiori, E.2
  • 32
    • 77956953029 scopus 로고    scopus 로고
    • Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces
    • Xia,Z. et al. (2010) Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol., 4, S6.
    • (2010) BMC Syst. Biol. , vol.4 , pp. S6
    • Xia, Z.1
  • 33
    • 79952345084 scopus 로고    scopus 로고
    • Analysis of multiple compound-protein interactions reveals novel bioactive molecules
    • Yabuuchi,H. et al. (2011) Analysis of multiple compound-protein interactions reveals novel bioactive molecules. Mol. Syst. Biol., 7, 472.
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 472
    • Yabuuchi, H.1
  • 34
    • 84871893054 scopus 로고    scopus 로고
    • Chemogenomic approaches to infer drug-target interaction networks
    • Yamanishi,Y. (2013) Chemogenomic approaches to infer drug-target interaction networks. Methods Mol. Biol., 939, 97-113.
    • (2013) Methods Mol. Biol. , vol.939 , pp. 97-113
    • Yamanishi, Y.1
  • 35
    • 46249090791 scopus 로고    scopus 로고
    • Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
    • Yamanishi,Y. et al. (2008) Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24, i232-i240.
    • (2008) Bioinformatics , vol.24 , pp. i232-i240
    • Yamanishi, Y.1
  • 36
    • 84930007565 scopus 로고    scopus 로고
    • When drug discovery meets web search: Learning to rank for ligand-based virtual screening
    • Zhang,W. et al. (2015) When drug discovery meets web search: learning to rank for ligand-based virtual screening. J. Cheminf., 7, 5.
    • (2015) J. Cheminf. , vol.7 , pp. 5
    • Zhang, W.1
  • 37
    • 84976493759 scopus 로고    scopus 로고
    • Collaborative matrix factorization with multiple similarities for predicting drug-target interactions
    • Zheng,X. et al. (2013) Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In ACM KDD, 1025-1033.
    • (2013) ACM KDD , pp. 1025-1033
    • Zheng, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.