-
1
-
-
84898684570
-
Sepsis: Current dogma and new perspectives
-
Deutschman CS, Tracey KJ. (2014) Sepsis: Current dogma and new perspectives. Immunity. 40:463-75.
-
(2014)
Immunity
, vol.40
, pp. 463-475
-
-
Deutschman, C.S.1
Tracey, K.J.2
-
3
-
-
84874256945
-
Immunosuppression in sepsis: A novel understanding of the disorder and a new therapeutic approach
-
Hotchkiss RS, Monneret G, Payen D. (2013) Immunosuppression in sepsis: A novel understanding of the disorder and a new therapeutic approach. Lancet Infect. Dis. 13:260-8.
-
(2013)
Lancet Infect. Dis
, vol.13
, pp. 260-268
-
-
Hotchkiss, R.S.1
Monneret, G.2
Payen, D.3
-
4
-
-
84908253572
-
The systemic immune response to trauma: An overview of pathophysiology and treatment
-
Lord JM, et al. (2014) The systemic immune response to trauma: An overview of pathophysiology and treatment. Lancet. 384:1455-65.
-
(2014)
Lancet
, vol.384
, pp. 1455-1465
-
-
Lord, J.M.1
-
5
-
-
34247588117
-
Acute lung injury and the acute respiratory distress syndrome: A clinical review
-
Wheeler AP, Bernard GR. (2007) Acute lung injury and the acute respiratory distress syndrome: A clinical review. Lancet. 369:1553-64.
-
(2007)
Lancet
, vol.369
, pp. 1553-1564
-
-
Wheeler, A.P.1
Bernard, G.R.2
-
6
-
-
84862490519
-
Acute respiratory distress syndrome: The Berlin Definition
-
Force ADT, et al. (2012) Acute respiratory distress syndrome: The Berlin Definition. JAMA. 307:2526-33.
-
(2012)
JAMA
, vol.307
, pp. 2526-2533
-
-
Force, A.1
-
7
-
-
77956817796
-
Clinical characteristics and outcomes of sepsis-related vs non-sepsis-related ARDS
-
Sheu CC, et al. (2010) Clinical characteristics and outcomes of sepsis-related vs non-sepsis-related ARDS. Chest. 138:559-67.
-
(2010)
Chest
, vol.138
, pp. 559-567
-
-
Sheu, C.C.1
-
8
-
-
84921815675
-
Strategies to improve drug development for sepsis
-
Fink MP, Warren HS. (2014) Strategies to improve drug development for sepsis. Nat. Rev. Drug. Discov. 13:741-58.
-
(2014)
Nat. Rev. Drug. Discov
, vol.13
, pp. 741-758
-
-
Fink, M.P.1
Warren, H.S.2
-
9
-
-
84952638052
-
Therapeutic targeting of acute lung injury and acute respiratory distress syndrome
-
Standiford TJ, Ward PA. (2016) Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Transl. Res. 167:183-91.
-
(2016)
Transl. Res
, vol.167
, pp. 183-191
-
-
Standiford, T.J.1
Ward, P.A.2
-
10
-
-
46749158250
-
Adverse functions of IL-17A in experimental sepsis
-
Flierl MA, et al. (2008) Adverse functions of IL-17A in experimental sepsis. FASEB J. 22:2198-205.
-
(2008)
FASEB J
, vol.22
, pp. 2198-2205
-
-
Flierl, M.A.1
-
11
-
-
84887606966
-
Therapeutic potential of targeting IL-17 and IL-23 in sepsis
-
Bosmann M, Ward PA. (2012) Therapeutic potential of targeting IL-17 and IL-23 in sepsis. Clin. Transl. Med. 1:4.
-
(2012)
Clin. Transl. Med
, vol.1
, pp. 4
-
-
Bosmann, M.1
Ward, P.A.2
-
12
-
-
3142654767
-
Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf
-
Mariathasan S, et al. (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature. 430:213-8.
-
(2004)
Nature
, vol.430
, pp. 213-218
-
-
Mariathasan, S.1
-
13
-
-
33745617094
-
Neutrophils in development of multiple organ failure in sepsis
-
Brown KA, et al. (2006) Neutrophils in development of multiple organ failure in sepsis. Lancet. 368:157-69.
-
(2006)
Lancet
, vol.368
, pp. 157-169
-
-
Brown, K.A.1
-
14
-
-
84875442814
-
Neutrophil recruitment and function in health and inflammation
-
Kolaczkowska E, Kubes P. (2013) Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13:159-75.
-
(2013)
Nat. Rev. Immunol
, vol.13
, pp. 159-175
-
-
Kolaczkowska, E.1
Kubes, P.2
-
15
-
-
0037394676
-
Neutrophils and acute lung injury
-
Abraham E. (2003) Neutrophils and acute lung injury. Crit. Care Med. 31:S195-9.
-
(2003)
Crit. Care Med
, vol.31
, pp. S195-S209
-
-
Abraham, E.1
-
16
-
-
84888325490
-
Sepsis-induced immunosuppression: From cellular dysfunctions to immunotherapy
-
Hotchkiss RS, Monneret G, Payen D. (2013) Sepsis-induced immunosuppression: From cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 13:862-74.
-
(2013)
Nat. Rev. Immunol
, vol.13
, pp. 862-874
-
-
Hotchkiss, R.S.1
Monneret, G.2
Payen, D.3
-
17
-
-
84864545901
-
Persistent inflammation and immunosuppression: A common syndrome and new horizon for surgical intensive care
-
Gentile LF, et al. (2012) Persistent inflammation and immunosuppression: A common syndrome and new horizon for surgical intensive care. J. Trauma Acute Care Surg. 72:1491-501.
-
(2012)
J. Trauma Acute Care Surg
, vol.72
, pp. 1491-1501
-
-
Gentile, L.F.1
-
18
-
-
84891655634
-
The role of mitochondrial dysfunction in sepsis-induced multi-organ failure
-
Singer M. (2014) The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 5:66-72.
-
(2014)
Virulence
, vol.5
, pp. 66-72
-
-
Singer, M.1
-
19
-
-
0037142987
-
Association between mitochondrial dysfunction and severity and outcome of septic shock
-
Brealey D, et al. (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 360:219-23.
-
(2002)
Lancet
, vol.360
, pp. 219-223
-
-
Brealey, D.1
-
20
-
-
34548176581
-
Mitochondrial function in sepsis: Acute phase versus multiple organ failure
-
Singer M. (2007) Mitochondrial function in sepsis: Acute phase versus multiple organ failure. Crit. Care Med. 35:S441-8.
-
(2007)
Crit. Care Med
, vol.35
, pp. S441-S448
-
-
Singer, M.1
-
21
-
-
84944314793
-
MKK3 deletion improves mitochondrial quality
-
Srivastava A, et al. (2015) MKK3 deletion improves mitochondrial quality. Free Radic. Biol. Med. 87:373-84.
-
(2015)
Free Radic. Biol. Med
, vol.87
, pp. 373-384
-
-
Srivastava, A.1
-
22
-
-
84928748370
-
Therapeutic potential of mesenchymal stromal cells for acute respiratory distress syndrome
-
Matthay MA. (2015) Therapeutic potential of mesenchymal stromal cells for acute respiratory distress syndrome. Ann. Am. Thorac. Soc. 12 Suppl 1:S54-7.
-
(2015)
Ann. Am. Thorac. Soc
, vol.12
, pp. S54-S57
-
-
Matthay, M.A.1
-
23
-
-
84860269323
-
Mitochondrial dysfunction and antioxidant therapy in sepsis
-
Rocha M, Herance R, Rovira S, Hernandez-Mijares A, Victor VM. (2012) Mitochondrial dysfunction and antioxidant therapy in sepsis. Infect. Disord. Drug Targets. 12:161-78.
-
(2012)
Infect. Disord. Drug Targets
, vol.12
, pp. 161-178
-
-
Rocha, M.1
Herance, R.2
Rovira, S.3
Hernandez-Mijares, A.4
Victor, V.M.5
-
24
-
-
84858782079
-
AMPK: A nutrient and energy sensor that maintains energy homeostasis
-
Hardie DG, Ross FA, Hawley SA. (2012) AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell. Biol. 13:251-62.
-
(2012)
Nat. Rev. Mol. Cell. Biol
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
25
-
-
84883497342
-
Sestrin 2 and AMPK connect hyperglycemia to Nox4-dependent endothelial nitric oxide synthase uncoupling and matrix protein expression
-
Eid AA, Lee DY, Roman LJ, Khazim K, Gorin Y. (2013) Sestrin 2 and AMPK connect hyperglycemia to Nox4-dependent endothelial nitric oxide synthase uncoupling and matrix protein expression. Mol. Cell. Biol. 33:3439-60.
-
(2013)
Mol. Cell. Biol
, vol.33
, pp. 3439-3460
-
-
Eid, A.A.1
Lee, D.Y.2
Roman, L.J.3
Khazim, K.4
Gorin, Y.5
-
26
-
-
67650882500
-
AMPKalpha1 regulates the antioxidant status of vascular endothelial cells
-
Colombo SL, Moncada S. (2009) AMPKalpha1 regulates the antioxidant status of vascular endothelial cells. Biochem. J. 421:163-9.
-
(2009)
Biochem. J
, vol.421
, pp. 163-169
-
-
Colombo, S.L.1
Moncada, S.2
-
27
-
-
67649484365
-
Structural insight into the autoinhibition mechanism of AMP-activated protein kinase
-
Chen L, et al. (2009) Structural insight into the autoinhibition mechanism of AMP-activated protein kinase. Nature. 459:1146-9.
-
(2009)
Nature
, vol.459
, pp. 1146-1149
-
-
Chen, L.1
-
28
-
-
0043210478
-
Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis
-
Woods A, et al. (2003) Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis. J. Biol. Chem. 278:28434-42.
-
(2003)
J. Biol. Chem
, vol.278
, pp. 28434-28442
-
-
Woods, A.1
-
29
-
-
84881347302
-
Metformin improves healthspan and lifespan in mice
-
Martin-Montalvo A, et al. (2013) Metformin improves healthspan and lifespan in mice. Nat. Commun. 4:2192.
-
(2013)
Nat. Commun
, vol.4
, pp. 2192
-
-
Martin-Montalvo, A.1
-
30
-
-
84914165449
-
Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls
-
Bannister CA, et al. (2014) Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes. Metab. 16:1165-73.
-
(2014)
Diabetes Obes. Metab
, vol.16
, pp. 1165-1173
-
-
Bannister, C.A.1
-
31
-
-
52649141738
-
Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury
-
Zhao X, et al. (2008) Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 295:L497-L504.
-
(2008)
Am. J. Physiol. Lung Cell. Mol. Physiol
, vol.295
, pp. L497-L504
-
-
Zhao, X.1
-
32
-
-
46849089280
-
Mitochondrial respiratory complex I regulates neutrophil activation and severity of lung injury
-
Zmijewski JW, et al. (2008) Mitochondrial respiratory complex I regulates neutrophil activation and severity of lung injury. Am. J. Respir. Crit. Care Med. 178:168-79.
-
(2008)
Am. J. Respir. Crit. Care Med
, vol.178
, pp. 168-179
-
-
Zmijewski, J.W.1
-
33
-
-
84889005964
-
Metformin-stimulated AMPK-α1 promotes microvascular repair in acute lung injury
-
Jian MY, Alexeyev MF, Wolkowicz PE, Zmijewski JW, Creighton JR. (2013) Metformin-stimulated AMPK-α1 promotes microvascular repair in acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 305:L844-L855.
-
(2013)
Am. J. Physiol. Lung Cell. Mol. Physiol
, vol.305
, pp. L844-L855
-
-
Jian, M.Y.1
Alexeyev, M.F.2
Wolkowicz, P.E.3
Zmijewski, J.W.4
Creighton, J.R.5
-
34
-
-
84901271982
-
Human resistin promotes neutrophil proinflammatory activation and neutrophil extracellular trap formation and increases severity of acute lung injury
-
Jiang S, et al. (2014) Human resistin promotes neutrophil proinflammatory activation and neutrophil extracellular trap formation and increases severity of acute lung injury. J. Immunol. 192:4795-803.
-
(2014)
J. Immunol
, vol.192
, pp. 4795-4803
-
-
Jiang, S.1
-
35
-
-
84871831205
-
Toll-like receptor 4 engagement inhibits adenosine 5′-monophosphate-activated protein kinase activation through a high mobility group box 1 protein-dependent mechanism
-
Tadie JM, et al. (2012) Toll-like receptor 4 engagement inhibits adenosine 5′-monophosphate-activated protein kinase activation through a high mobility group box 1 protein-dependent mechanism. Mol. Med. 18:659-68.
-
(2012)
Mol. Med
, vol.18
, pp. 659-668
-
-
Tadie, J.M.1
-
36
-
-
84874544167
-
Inhibition of AMP-activated protein kinase accentuates lipopolysaccharide-induced lung endothelial barrier dysfunction and lung injury in vivo
-
Xing J, et al. (2013) Inhibition of AMP-activated protein kinase accentuates lipopolysaccharide-induced lung endothelial barrier dysfunction and lung injury in vivo. Am. J. Pathol. 182:1021-30.
-
(2013)
Am. J. Pathol
, vol.182
, pp. 1021-1030
-
-
Xing, J.1
-
37
-
-
84871848035
-
AMP-activated protein kinase restricts IFN-gamma signaling
-
Meares GP, Qin H, Liu Y, Holdbrooks AT, Benveniste EN. (2013) AMP-activated protein kinase restricts IFN-gamma signaling. J. Immunol. 190:372-80.
-
(2013)
J. Immunol
, vol.190
, pp. 372-380
-
-
Meares, G.P.1
Qin, H.2
Liu, Y.3
Holdbrooks, A.T.4
Benveniste, E.N.5
-
38
-
-
84925121037
-
GSK3β-dependent inhibition of AMPK potentiates activation of neutrophils and macrophages and enhances severity of acute lung injury
-
Park DW, et al. (2014) GSK3β-dependent inhibition of AMPK potentiates activation of neutrophils and macrophages and enhances severity of acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 307:L735-45.
-
(2014)
Am. J. Physiol. Lung Cell. Mol. Physiol
, vol.307
, pp. L735-L745
-
-
Park, D.W.1
-
39
-
-
84887189624
-
Inhibition of AMPK catabolic action by GSK3
-
Suzuki T, et al. (2013) Inhibition of AMPK catabolic action by GSK3. Mol. Cell 50:407-19.
-
(2013)
Mol. Cell
, vol.50
, pp. 407-419
-
-
Suzuki, T.1
-
40
-
-
84883738441
-
Mitochondria and AMP-activated protein kinase-dependent mechanism of efferocytosis
-
Jiang S, et al. (2013) Mitochondria and AMP-activated protein kinase-dependent mechanism of efferocytosis. J. Biol. Chem. 288:26013-26.
-
(2013)
J. Biol. Chem
, vol.288
, pp. 26013-26026
-
-
Jiang, S.1
-
42
-
-
70249151423
-
Sodium nitrite therapy attenuates the hypertensive effects of HBOC-201 via nitrite reduction
-
Rodriguez C, et al. (2009) Sodium nitrite therapy attenuates the hypertensive effects of HBOC-201 via nitrite reduction. Biochem. J. 422:423-32.
-
(2009)
Biochem. J
, vol.422
, pp. 423-432
-
-
Rodriguez, C.1
-
43
-
-
65249175689
-
Antiinflammatory effects of hydrogen peroxide in neutrophil activation and acute lung injury
-
Zmijewski JW, et al. (2009) Antiinflammatory effects of hydrogen peroxide in neutrophil activation and acute lung injury. Am. J. Respir. Crit. Care Med. 179:694-704.
-
(2009)
Am. J. Respir. Crit. Care Med
, vol.179
, pp. 694-704
-
-
Zmijewski, J.W.1
-
44
-
-
84878237993
-
Activation and regulation of the inflammasomes
-
Latz E, Xiao TS, Stutz A. (2013) Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13:397-411.
-
(2013)
Nat. Rev. Immunol
, vol.13
, pp. 397-411
-
-
Latz, E.1
Xiao, T.S.2
Stutz, A.3
-
45
-
-
0036900535
-
Shock-induced neutrophil mediated priming for acute lung injury in mice: Divergent effects of TLR-4 and TLR-4/FasL deficiency
-
Ayala A, et al. (2002) Shock-induced neutrophil mediated priming for acute lung injury in mice: Divergent effects of TLR-4 and TLR-4/FasL deficiency. Am. J. Pathol. 161:2283-94.
-
(2002)
Am. J. Pathol
, vol.161
, pp. 2283-2294
-
-
Ayala, A.1
-
46
-
-
0027967441
-
A labile transcriptional repressor modulates endotoxin tolerance
-
LaRue KE, McCall CE. (1994) A labile transcriptional repressor modulates endotoxin tolerance. J. Exp. Med. 180:2269-75.
-
(1994)
J. Exp. Med
, vol.180
, pp. 2269-2275
-
-
Larue, K.E.1
McCall, C.E.2
-
47
-
-
84945470825
-
Processing body formation limits proinflammatory cytokine synthesis in endotoxin-tolerant monocytes and murine septic macrophages
-
McClure C, Brudecki L, Yao ZQ, McCall CE, El Gazzar M. (2015) Processing body formation limits proinflammatory cytokine synthesis in endotoxin-tolerant monocytes and murine septic macrophages. J. Innate Immun. 7:572-83.
-
(2015)
J. Innate Immun
, vol.7
, pp. 572-583
-
-
McClure, C.1
Brudecki, L.2
Yao, Z.Q.3
McCall, C.E.4
El Gazzar, M.5
-
48
-
-
58849115949
-
Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype
-
Sag D, Carling D, Stout RD, Suttles J. (2008) Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol. 181:8633-41.
-
(2008)
J. Immunol
, vol.181
, pp. 8633-8641
-
-
Sag, D.1
Carling, D.2
Stout, R.D.3
Suttles, J.4
-
49
-
-
65649108647
-
Berberine suppresses proinflammatory responses through AMPK activation in macrophages
-
Jeong HW, et al. (2009) Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am. J. Physiol. Endocrinol. Metab. 296:E955-64.
-
(2009)
Am. J. Physiol. Endocrinol. Metab
, vol.296
, pp. E955-E964
-
-
Jeong, H.W.1
-
50
-
-
84924952897
-
Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1α
-
Shalova IN, et al. (2015) Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1α. Immunity. 42:484-98.
-
(2015)
Immunity
, vol.42
, pp. 484-498
-
-
Shalova, I.N.1
-
52
-
-
0036256051
-
Failure of neutrophil chemotactic function in septic patients
-
Tavares-Murta BM, et al. (2002) Failure of neutrophil chemotactic function in septic patients. Crit. Care Med. 30:1056-61.
-
(2002)
Crit. Care Med
, vol.30
, pp. 1056-1061
-
-
Tavares-Murta, B.M.1
-
53
-
-
0037442128
-
The mitochondrial network of human neutrophils: Role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis
-
Fossati G, et al. (2003) The mitochondrial network of human neutrophils: Role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis. J. Immunol. 170: 1964-72.
-
(2003)
J. Immunol
, vol.170
, pp. 1964-1972
-
-
Fossati, G.1
-
54
-
-
84878103683
-
Hospital-acquired pneumonia and ventilator-associated pneumonia: Recent advances in epidemiology and management
-
Barbier F, Andremont A, Wolff M, Bouadma L. (2013) Hospital-acquired pneumonia and ventilator-associated pneumonia: Recent advances in epidemiology and management. Curr. Opin. Pulm. Med. 19:216-28.
-
(2013)
Curr. Opin. Pulm. Med
, vol.19
, pp. 216-228
-
-
Barbier, F.1
Remont, A.2
Wolff, M.3
Bouadma, L.4
-
55
-
-
23944486750
-
Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3
-
Martin M, Rehani K, Jope RS, Michalek SM. (2005) Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat. Immunol. 6:777-84.
-
(2005)
Nat. Immunol
, vol.6
, pp. 777-784
-
-
Martin, M.1
Rehani, K.2
Jope, R.S.3
Michalek, S.M.4
-
56
-
-
84924905290
-
Inhibition of glycogen synthase kinase-3β attenuates organ injury and dysfunction associated with liver ischemia-reperfusion and thermal injury in the rat
-
Rocha J, et al. (2015) Inhibition of glycogen synthase kinase-3β attenuates organ injury and dysfunction associated with liver ischemia-reperfusion and thermal injury in the rat. Shock. 43:369-78.
-
(2015)
Shock
, vol.43
, pp. 369-378
-
-
Rocha, J.1
-
57
-
-
84890079105
-
NF-κB inhibition after cecal ligation and puncture reduces sepsis-associated lung injury without altering bacterial host defense
-
Li H, et al. (2013) NF-κB inhibition after cecal ligation and puncture reduces sepsis-associated lung injury without altering bacterial host defense. Mediators Inflamm. 2013:503213.
-
(2013)
Mediators Inflamm
, vol.2013
-
-
Li, H.1
-
58
-
-
84889639030
-
Activation of AMPK enhances neutrophil chemotaxis and bacterial killing
-
Park DW, et al. (2013) Activation of AMPK enhances neutrophil chemotaxis and bacterial killing. Mol. Med. 19:387-98.
-
(2013)
Mol. Med
, vol.19
, pp. 387-398
-
-
Park, D.W.1
-
59
-
-
82655173730
-
AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils
-
Bae HB, et al. (2011) AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils. FASEB J. 25: 4358-68.
-
(2011)
FASEB J
, vol.25
, pp. 4358-4368
-
-
Bae, H.B.1
-
60
-
-
84881356321
-
AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration
-
Mounier R, et al. (2013) AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab. 18:251-64.
-
(2013)
Cell Metab
, vol.18
, pp. 251-264
-
-
Mounier, R.1
-
61
-
-
77949265454
-
Metformin increases phagocytosis and acidifies lysosomal/endosomal compartments in AMPK-dependent manner in rat primary microglia
-
Labuzek K, Liber S, Gabryel B, Adamczyk J, Okopien B. Metformin increases phagocytosis and acidifies lysosomal/endosomal compartments in AMPK-dependent manner in rat primary microglia. Naunyn Schmiedebergs Arch. Pharmacol. 381:171-86.
-
Naunyn Schmiedebergs Arch. Pharmacol
, vol.381
, pp. 171-186
-
-
Labuzek, K.1
Liber, S.2
Gabryel, B.3
Adamczyk, J.4
Okopien, B.5
-
62
-
-
84929668599
-
Skeletal muscle dysfunction is associated with derangements in mitochondrial bioenergetics (But not UCP3) in a rodent model of sepsis
-
Zolfaghari PS, et al. (2015) Skeletal muscle dysfunction is associated with derangements in mitochondrial bioenergetics (but not UCP3) in a rodent model of sepsis. Am. J. Physiol. Endocrinol. Metab. 308:E713-25.
-
(2015)
Am. J. Physiol. Endocrinol. Metab
, vol.308
, pp. E713-E725
-
-
Zolfaghari, P.S.1
-
63
-
-
79955476448
-
Bioenergetic failure of human peripheral blood monocytes in patients with septic shock is mediated by reduced F1Fo adenosine-5′-triphosphate synthase activity
-
Japiassu AM, et al. (2011) Bioenergetic failure of human peripheral blood monocytes in patients with septic shock is mediated by reduced F1Fo adenosine-5′-triphosphate synthase activity. Crit. Care Med. 39:1056-63.
-
(2011)
Crit. Care Med
, vol.39
, pp. 1056-1063
-
-
Japiassu, A.M.1
-
64
-
-
84948767733
-
Stimulation of brain AMP-activated protein kinase attenuates inflammation and acute lung injury in sepsis
-
Mulchandani N, et al. (2015) Stimulation of brain AMP-activated protein kinase attenuates inflammation and acute lung injury in sepsis. Mol. Med. 21:637-44.
-
(2015)
Mol. Med
, vol.21
, pp. 637-644
-
-
Mulchandani, N.1
-
65
-
-
84900523766
-
MKK3 regulates mitochondrial biogenesis and mitophagy in sepsis-induced lung injury
-
Mannam P, et al. (2014) MKK3 regulates mitochondrial biogenesis and mitophagy in sepsis-induced lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 306:L604-19.
-
(2014)
Am. J. Physiol. Lung Cell. Mol. Physiol
, vol.306
, pp. L604-L619
-
-
Mannam, P.1
-
66
-
-
84255193988
-
Immunosuppression in sepsis
-
Ward PA. (2011) Immunosuppression in sepsis. JAMA. 306:2618-9.
-
(2011)
JAMA
, vol.306
, pp. 2618-2619
-
-
Ward, P.A.1
-
67
-
-
84872159532
-
AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo
-
Faubert B, et al. (2013) AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 17:113-24.
-
(2013)
Cell Metab
, vol.17
, pp. 113-124
-
-
Faubert, B.1
-
69
-
-
84975116587
-
-
updated 2015 Dec 8; cited 2016 Jan 29, identifier: NCT02432287
-
Metformin in Longevity Study (MILES) [Internet]. (2016) [updated 2015 Dec 8; cited 2016 Jan 29]. Available from: Https://clinicaltrials.gov/ct2/show/record/NCT02432287ClinicalTrials.gov identifier: NCT02432287.
-
(2016)
Metformin in Longevity Study (MILES)
-
-
|