메뉴 건너뛰기




Volumn , Issue , 2011, Pages 2220-2227

Latent structured models for human pose estimation

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX ENVIRONMENTS; FIGURE-GROUND; FOURIER; HUMAN POSE; HUMAN POSE ESTIMATIONS; KERNEL APPROXIMATION; MONOCULAR IMAGE; OUTPUT VARIABLES; POSE ESTIMATION; PREDICTION PROBLEM; SCALE-UP; SEGMENT SELECTION; STRUCTURED MODEL; STRUCTURED PREDICTION;

EID: 84856631919     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2011.6126500     Document Type: Conference Paper
Times cited : (266)

References (26)
  • 1
    • 56749176856 scopus 로고    scopus 로고
    • A local basis representation for estimating human pose from cluttered images
    • A. Agarwal and B. Triggs. A local basis representation for estimating human pose from cluttered images. In ACCV, 2006.
    • (2006) ACCV
    • Agarwal, A.1    Triggs, B.2
  • 2
    • 51949100471 scopus 로고    scopus 로고
    • People tracking by-detection and people-detection-by-tracking
    • M. Andriluka, S. Roth, and B. Schiele. People Trackingby-Detection and People-Detection-by-Tracking. In CVPR, 2008.
    • (2008) CVPR
    • Andriluka, M.1    Roth, S.2    Schiele, B.3
  • 3
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3d human pose annotations
    • L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose annotations. In ICCV, 2009.
    • (2009) ICCV
    • Bourdev, L.1    Malik, J.2
  • 4
    • 45049084131 scopus 로고    scopus 로고
    • Posecut: Simultaneous segmentation and and 3d pose estimation of humans using dynamic graph cuts
    • M. Bray, P. Kohli, and P. Torr. Posecut: Simultaneous segmentation and and 3d pose estimation of humans using dynamic graph cuts. In ECCV, 2006.
    • (2006) ECCV
    • Bray, M.1    Kohli, P.2    Torr, P.3
  • 5
    • 51949090604 scopus 로고    scopus 로고
    • The kneed walker for human pose tracking
    • M. Brubaker and D. Fleet. The Kneed Walker for Human Pose Tracking. In CVPR, 2008.
    • (2008) CVPR
    • Brubaker, M.1    Fleet, D.2
  • 6
    • 77956008665 scopus 로고    scopus 로고
    • Constrained parametric min-cuts for automatic object segmentation
    • J. Carreira and C. Sminchisescu. Constrained Parametric Min-Cuts for Automatic Object Segmentation. In CVPR, 2010.
    • (2010) CVPR
    • Carreira, J.1    Sminchisescu, C.2
  • 7
    • 31844441189 scopus 로고    scopus 로고
    • A general regression technique for learning transductions
    • New York, NY, USA, ACM
    • C. Cortes, M. Mohri, and J. Weston. A general regression technique for learning transductions. In ICML, pages 153-160, New York, NY, USA, 2005. ACM.
    • (2005) ICML , pp. 153-160
    • Cortes, C.1    Mohri, M.2    Weston, J.3
  • 8
    • 0033697160 scopus 로고    scopus 로고
    • Articulated body motion capture by annealed particle filtering
    • J. Deutscher, A. Blake, and I. Reid. Articulated Body Motion Capture by Annealed Particle Filtering. In CVPR, 2000.
    • (2000) CVPR
    • Deutscher, J.1    Blake, A.2    Reid, I.3
  • 9
    • 80052886377 scopus 로고    scopus 로고
    • We are family: Joint pose estimation of multiple persons
    • M. Eichner and V. Ferrari. We are family: Joint Pose Estimation of Multiple Persons. In ECCV, 2010.
    • (2010) ECCV
    • Eichner, M.1    Ferrari, V.2
  • 10
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained partbased models
    • P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained partbased models. PAMI, 32:1627-1645, 2010.
    • (2010) PAMI , vol.32 , pp. 1627-1645
    • Felzenszwalb, P.1    Girshick, R.2    McAllester, D.3    Ramanan, D.4
  • 11
    • 70450179995 scopus 로고    scopus 로고
    • Pose Seach: Retrieving people using their pose
    • V. Ferrari, M. Marin, and A. Zisserman. Pose Seach: retrieving people using their pose. In CVPR, 2009.
    • (2009) CVPR
    • Ferrari, V.1    Marin, M.2    Zisserman, A.3
  • 13
    • 77953208029 scopus 로고    scopus 로고
    • Structural SVM for visual localization and continuous state estimation
    • C. Ionescu, L. Bo, and C. Sminchisescu. Structural SVM for Visual Localization and Continuous State Estimation. In ICCV, 2009.
    • (2009) ICCV
    • Ionescu, C.1    Bo, L.2    Sminchisescu, C.3
  • 15
    • 77955990360 scopus 로고    scopus 로고
    • Object recognition as ranking holistic figure-ground hypotheses
    • F. Li, J. Carreira, and C. Sminchisescu. Object Recognition as Ranking Holistic Figure-Ground Hypotheses. In CVPR, 2010.
    • (2010) CVPR
    • Li, F.1    Carreira, J.2    Sminchisescu, C.3
  • 16
    • 84860611691 scopus 로고    scopus 로고
    • Random fourier approximations for skewed multiplicative histogram kernels
    • September
    • F. Li, C. Ionescu, and C. Sminchisescu. Random Fourier approximations for skewed multiplicative histogram kernels. In LNCS (DAGM), September 2010.
    • (2010) LNCS (DAGM)
    • Li, F.1    Ionescu, C.2    Sminchisescu, C.3
  • 17
    • 85162536812 scopus 로고    scopus 로고
    • Convex multiple instance learning by estimating likelihood ratio
    • F. Li and C. Sminchisescu. Convex Multiple Instance Learning by Estimating Likelihood Ratio. In NIPS, 2010.
    • (2010) NIPS
    • Li, F.1    Sminchisescu, C.2
  • 18
    • 77953218689 scopus 로고    scopus 로고
    • Random features for large-scale kernel machines
    • A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NIPS, 2007.
    • (2007) NIPS
    • Rahimi, A.1    Recht, B.2
  • 19
    • 79958720362 scopus 로고    scopus 로고
    • Cascaded models for articulated pose estimation
    • B. Sapp, A. Toshev, and B. Taskar. Cascaded Models for Articulated Pose Estimation. In ECCV, 2010.
    • (2010) ECCV
    • Sapp, B.1    Toshev, A.2    Taskar, B.3
  • 20
    • 75149186907 scopus 로고    scopus 로고
    • Combined discriminative and generative articulated pose and non-rigid shape estimation
    • L. Sigal, A. Balan, and M. J. Black. Combined discriminative and generative articulated pose and non-rigid shape estimation. In NIPS, 2007.
    • (2007) NIPS
    • Sigal, L.1    Balan, A.2    Black, M.J.3
  • 22
    • 85047052987 scopus 로고    scopus 로고
    • Shared kernel information embedding for discriminative inference
    • L. Sigal, R. Memisevic, and D. Fleet. Shared Kernel Information Embedding for Discriminative Inference. In CVPR, 2010.
    • (2010) CVPR
    • Sigal, L.1    Memisevic, R.2    Fleet, D.3
  • 23
    • 14344249522 scopus 로고    scopus 로고
    • Generative modeling for continuous non-linearly embedded visual inference
    • Banff
    • C. Sminchisescu and A. Jepson. Generative Modeling for Continuous Non-Linearly Embedded Visual Inference. In ICML, pages 759-766, Banff, 2004.
    • (2004) ICML , pp. 759-766
    • Sminchisescu, C.1    Jepson, A.2
  • 24
    • 34548780282 scopus 로고    scopus 로고
    • BM3E: Discriminative density propagation for visual tracking
    • C. Sminchisescu, A. Kanaujia, and D. Metaxas. BM3E: Discriminative Density Propagation for Visual Tracking. PAMI, 2007.
    • (2007) PAMI
    • Sminchisescu, C.1    Kanaujia, A.2    Metaxas, D.3
  • 25
    • 33745823422 scopus 로고    scopus 로고
    • Priors for people tracking in small training sets
    • R. Urtasun, D. Fleet, A. Hertzmann, and P. Fua. Priors for people tracking in small training sets. In ICCV, 2005.
    • (2005) ICCV
    • Urtasun, R.1    Fleet, D.2    Hertzmann, A.3    Fua, P.4
  • 26
    • 77955989063 scopus 로고    scopus 로고
    • Efficient additive kernels via explicit feature maps
    • A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. In CVPR, 2010.
    • (2010) CVPR
    • Vedaldi, A.1    Zisserman, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.