메뉴 건너뛰기




Volumn 22, Issue 1, 2017, Pages 114-140

On the unnecessary ubiquity of hierarchical linear modeling

Author keywords

Cluster robust errors; Clustered data; GEE; HLM; Multilevel model

Indexed keywords

ERROR; HUMAN; HUMAN EXPERIMENT; PSYCHOLOGIST; PSYCHOLOGY; PSYCINFO; STATISTICAL MODEL; BEHAVIORAL SCIENCE; CLUSTER ANALYSIS; PSYCHOLOGICAL MODEL; SAMPLE SIZE;

EID: 85000936579     PISSN: 1082989X     EISSN: None     Source Type: Journal    
DOI: 10.1037/met0000078     Document Type: Article
Times cited : (538)

References (132)
  • 1
    • 33845426935 scopus 로고    scopus 로고
    • Combining individual and ecological data to determine compositional and contextual socioeconomic risk factors for suicide
    • Agerbo, E., Sterne, J. A., & Gunnell, D. J. (2007). Combining individual and ecological data to determine compositional and contextual socioeconomic risk factors for suicide. Social Science & Medicine, 64, 451-461. http://dx.doi.org/10.1016/j.socscimed.2006.08.043.
    • (2007) Social Science & Medicine , vol.64 , pp. 451-461
    • Agerbo, E.1    Sterne, J.A.2    Gunnell, D.J.3
  • 2
    • 4944247358 scopus 로고    scopus 로고
    • Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies
    • Agresti, A., Caffo, B., & Ohman-Strickland, P. (2004). Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies. Computational Statistics & Data Analysis, 47, 639-653. http://dx.doi.org/10.1016/j.csda.2003.12.009.
    • (2004) Computational Statistics & Data Analysis , vol.47 , pp. 639-653
    • Agresti, A.1    Caffo, B.2    Ohman-Strickland, P.3
  • 3
    • 84885025235 scopus 로고    scopus 로고
    • Paper presented at the SAS Global Forum, Orlando, FL, April
    • Allison, P. D. (2012, April). Handling missing data by maximum likelihood. Paper presented at the SAS Global Forum, Orlando, FL. Retrieved from http://www.statisticalhorizons.com/wp-content/uploads/ MissingDataByML.pdf.
    • (2012) Handling missing data by maximum likelihood
    • Allison, P.D.1
  • 5
    • 2342557088 scopus 로고    scopus 로고
    • Using generalized estimating equations for longitudinal data analysis
    • Ballinger, G. A. (2004). Using generalized estimating equations for longitudinal data analysis. Organizational Research Methods, 7, 127-150. http://dx.doi.org/10.1177/1094428104263672.
    • (2004) Organizational Research Methods , vol.7 , pp. 127-150
    • Ballinger, G.A.1
  • 6
    • 79951621100 scopus 로고    scopus 로고
    • Assessing the precision of estimates of variance components
    • Seewiesen, Austria: Presentation at the Max Planck Institute for Ornithology.
    • Bates, D. (2009). Assessing the precision of estimates of variance components. Seewiesen, Austria: Presentation at the Max Planck Institute for Ornithology.
    • (2009)
    • Bates, D.1
  • 8
    • 83755185645 scopus 로고    scopus 로고
    • Fitting multilevel models with ordinal outcomes: Performance of alternative specifications and methods of estimation
    • Bauer, D. J., & Sterba, S. K. (2011). Fitting multilevel models with ordinal outcomes: Performance of alternative specifications and methods of estimation. Psychological Methods, 16, 373-390. http://dx.doi.org/10 .1037/a0025813.
    • (2011) Psychological Methods , vol.16 , pp. 373-390
    • Bauer, D.J.1    Sterba, S.K.2
  • 9
    • 0041565373 scopus 로고    scopus 로고
    • Separation of individual-level and clusterlevel covariate effects in regression analysis of correlated data
    • Begg, M. D., & Parides, M. K. (2003). Separation of individual-level and clusterlevel covariate effects in regression analysis of correlated data. Statistics in Medicine, 22, 2591-2602. http://dx.doi.org/10.1002/sim.1524.
    • (2003) Statistics in Medicine , vol.22 , pp. 2591-2602
    • Begg, M.D.1    Parides, M.K.2
  • 10
    • 6344243533 scopus 로고    scopus 로고
    • Asymptotic effect of misspecification in the random part of the multilevel model
    • Berkhof, J., & Kampen, J. K. (2004). Asymptotic effect of misspecification in the random part of the multilevel model. Journal of Educational and Behavioral Statistics, 29, 201-218. http://dx.doi.org/10.3102/ 10769986029002201.
    • (2004) Journal of Educational and Behavioral Statistics , vol.29 , pp. 201-218
    • Berkhof, J.1    Kampen, J.K.2
  • 11
    • 35548934245 scopus 로고    scopus 로고
    • A simulation study comparing weighted estimating equations with multiple imputation based estimating equations for longitudinal binary data
    • Beunckens, C., Sotto, C., & Molenberghs, G. (2008). A simulation study comparing weighted estimating equations with multiple imputation based estimating equations for longitudinal binary data. Computational Statistics & Data Analysis, 52, 1533-1548. http://dx.doi.org/10.1016/j .csda.2007.04.020.
    • (2008) Computational Statistics & Data Analysis , vol.52 , pp. 1533-1548
    • Beunckens, C.1    Sotto, C.2    Molenberghs, G.3
  • 15
    • 84929658686 scopus 로고    scopus 로고
    • A practitioner's guide to clusterrobust inference
    • Cameron, A. C., & Miller, D. L. (2015). A practitioner's guide to clusterrobust inference. Journal of Human Resources, 50, 317-372.
    • (2015) Journal of Human Resources , vol.50 , pp. 317-372
    • Cameron, A.C.1    Miller, D.L.2
  • 16
    • 0042484818 scopus 로고    scopus 로고
    • A case study on the choice, interpretation and checking of multilevel models for longitudinal binary outcomes
    • Carlin, J. B., Wolfe, R., Brown, C. H., & Gelman, A. (2001). A case study on the choice, interpretation and checking of multilevel models for longitudinal binary outcomes. Biostatistics, 2, 397-416. http://dx.doi .org/10.1093/biostatistics/2.4.397.
    • (2001) Biostatistics , vol.2 , pp. 397-416
    • Carlin, J.B.1    Wolfe, R.2    Brown, C.H.3    Gelman, A.4
  • 17
    • 33745037252 scopus 로고    scopus 로고
    • A comparison of multiple imputation and doubly robust estimation for analyses with missing data
    • Carpenter, J. R., Kenward, M. G., & Vansteelandt, S. (2006). A comparison of multiple imputation and doubly robust estimation for analyses with missing data. Journal of the Royal Statistical Society Series A, 169, 571-584. http://dx.doi.org/10.1111/j.1467-985X.2006.00407.x.
    • (2006) Journal of the Royal Statistical Society Series A , vol.169 , pp. 571-584
    • Carpenter, J.R.1    Kenward, M.G.2    Vansteelandt, S.3
  • 18
    • 77952557371 scopus 로고    scopus 로고
    • Weighted generalized estimating functions for longitudinal response and covariate data that are missing at random
    • Chen, B., Yi, G., & Cook, R. J. (2010). Weighted generalized estimating functions for longitudinal response and covariate data that are missing at random. Journal of the American Statistical Association, 105, 336-353. http://dx.doi.org/10.1198/jasa.2010.tm08551.
    • (2010) Journal of the American Statistical Association , vol.105 , pp. 336-353
    • Chen, B.1    Yi, G.2    Cook, R.J.3
  • 19
    • 0036750728 scopus 로고    scopus 로고
    • Using spherical-radial quadrature to fit generalized linear mixed effects models
    • Clarkson, D. B., & Zhan, Y. (2002). Using spherical-radial quadrature to fit generalized linear mixed effects models. Journal of Computational and Graphical Statistics, 11, 639-659. http://dx.doi.org/10.1198/ 106186002439.
    • (2002) Journal of Computational and Graphical Statistics , vol.11 , pp. 639-659
    • Clarkson, D.B.1    Zhan, Y.2
  • 22
    • 33846589881 scopus 로고    scopus 로고
    • Comparison of PQL and Laplace 6 estimates of hierarchical linear models when comparing groups of small incident rates in cluster randomized trials
    • Diaz, R. E. (2007). Comparison of PQL and Laplace 6 estimates of hierarchical linear models when comparing groups of small incident rates in cluster randomized trials. Computational Statistics & Data Analysis, 51, 2871-2888. http://dx.doi.org/10.1016/j.csda.2006.10.005.
    • (2007) Computational Statistics & Data Analysis , vol.51 , pp. 2871-2888
    • Diaz, R.E.1
  • 23
    • 68949165104 scopus 로고    scopus 로고
    • Applied missing data analysis
    • New York, NY: Guilford Press.
    • Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford Press.
    • (2010)
    • Enders, C.K.1
  • 24
    • 34548463099 scopus 로고    scopus 로고
    • Centering predictor variables in cross-sectional multilevel models: A new look at an old issue
    • Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. Psychological Methods, 12, 121-138. http://dx.doi.org/10.1037/1082-989X.12 .2.121.
    • (2007) Psychological Methods , vol.12 , pp. 121-138
    • Enders, C.K.1    Tofighi, D.2
  • 25
    • 0036402738 scopus 로고    scopus 로고
    • Effects of misspecifying the first-level error structure in two-level models of change
    • Ferron, J., Dailey, R., & Yi, Q. (2002). Effects of misspecifying the first-level error structure in two-level models of change. Multivariate Behavioral Research, 37, 379-403. http://dx.doi.org/10.1207/ S15327906MBR3703_4.
    • (2002) Multivariate Behavioral Research , vol.37 , pp. 379-403
    • Ferron, J.1    Dailey, R.2    Yi, Q.3
  • 26
    • 0029061272 scopus 로고
    • A caveat concerning independence estimating equations with multivariate binary data
    • Fitzmaurice, G. M. (1995). A caveat concerning independence estimating equations with multivariate binary data. Biometrics, 51, 309-317. http:// dx.doi.org/10.2307/2533336.
    • (1995) Biometrics , vol.51 , pp. 309-317
    • Fitzmaurice, G.M.1
  • 27
    • 84972541974 scopus 로고
    • Regression models for discrete longitudinal responses
    • Fitzmaurice, G. M., Laird, N. M., & Rotnitzky, A. G. (1993). Regression models for discrete longitudinal responses. Statistical Science, 8, 284-299. http://dx.doi.org/10.1214/ss/1177010899.
    • (1993) Statistical Science , vol.8 , pp. 284-299
    • Fitzmaurice, G.M.1    Laird, N.M.2    Rotnitzky, A.G.3
  • 29
    • 61749087965 scopus 로고    scopus 로고
    • Fixed effects, random effects and GEE: What are the differences?
    • Gardiner, J. C., Luo, Z., & Roman, L. A. (2009). Fixed effects, random effects and GEE: What are the differences? Statistics in Medicine, 28, 221-239. http://dx.doi.org/10.1002/sim.3478.
    • (2009) Statistics in Medicine , vol.28 , pp. 221-239
    • Gardiner, J.C.1    Luo, Z.2    Roman, L.A.3
  • 30
    • 84856459113 scopus 로고    scopus 로고
    • Religiosity, social self-esteem, and psychological adjustment: On the cross-cultural specificity of the psychological benefits of religiosity
    • Gebauer, J. E., Sedikides, C., & Neberich, W. (2012). Religiosity, social self-esteem, and psychological adjustment: On the cross-cultural specificity of the psychological benefits of religiosity. Psychological Science, 23, 158-160. http://dx.doi.org/10.1177/0956797611427045.
    • (2012) Psychological Science , vol.23 , pp. 158-160
    • Gebauer, J.E.1    Sedikides, C.2    Neberich, W.3
  • 31
    • 11844279080 scopus 로고    scopus 로고
    • An introduction to generalized estimating equations and an application to assess selectivity effects in a longitudinal study on very old individuals
    • Ghisletta, P., & Spini, D. (2004). An introduction to generalized estimating equations and an application to assess selectivity effects in a longitudinal study on very old individuals. Journal of Educational and Behavioral Statistics, 29, 421-437. http://dx.doi.org/10.3102/10769986029004421.
    • (2004) Journal of Educational and Behavioral Statistics , vol.29 , pp. 421-437
    • Ghisletta, P.1    Spini, D.2
  • 32
    • 33645834951 scopus 로고    scopus 로고
    • Computational statistics
    • New York: John Wiley & Sons.
    • Givens, G. H., & Hoeting, J. A. (2005). Computational statistics. New York: John Wiley & Sons.
    • (2005)
    • Givens, G.H.1    Hoeting, J.A.2
  • 33
    • 84902801587 scopus 로고    scopus 로고
    • Criteria to select a working correlation structure for the generalized estimating equations method in SAS
    • Gosho, M. (2014). Criteria to select a working correlation structure for the generalized estimating equations method in SAS. Journal of Statistical Software, 57, 1-10. http://dx.doi.org/10.18637/jss.v057.c01.
    • (2014) Journal of Statistical Software , vol.57 , pp. 1-10
    • Gosho, M.1
  • 34
    • 80053278456 scopus 로고    scopus 로고
    • Criterion for the selection of a working correlation structure in the generalized estimating equation approach for longitudinal balanced data
    • Gosho, M., Hamada, C., & Yoshimura, I. (2011). Criterion for the selection of a working correlation structure in the generalized estimating equation approach for longitudinal balanced data. Communications in Statistics Theory and Methods, 40, 3839-3856. http://dx.doi.org/10.1080/ 03610926.2010.501938.
    • (2011) Communications in Statistics Theory and Methods , vol.40 , pp. 3839-3856
    • Gosho, M.1    Hamada, C.2    Yoshimura, I.3
  • 35
    • 33644693277 scopus 로고    scopus 로고
    • Selecting the best linear mixed model under REML
    • Gurka, M. J. (2006). Selecting the best linear mixed model under REML. The American Statistician, 60, 19-26. http://dx.doi.org/10.1198/ 000313006X90396.
    • (2006) The American Statistician , vol.60 , pp. 19-26
    • Gurka, M.J.1
  • 36
    • 0037441919 scopus 로고    scopus 로고
    • Statistical analysis of correlated data using generalized estimating equations: An orientation
    • Hanley, J. A., Negassa, A., Edwardes, M. D., & Forrester, J. E. (2003). Statistical analysis of correlated data using generalized estimating equations: An orientation. American Journal of Epidemiology, 157, 364-375. http://dx.doi.org/10.1093/aje/kwf215.
    • (2003) American Journal of Epidemiology , vol.157 , pp. 364-375
    • Hanley, J.A.1    Negassa, A.2    Edwardes, M.D.3    Forrester, J.E.4
  • 37
    • 77956807205 scopus 로고    scopus 로고
    • Propensity score techniques and the assessment of measured covariate balance to test causal associations in psychological research
    • Harder, V. S., Stuart, E. A., & Anthony, J. C. (2010). Propensity score techniques and the assessment of measured covariate balance to test causal associations in psychological research. Psychological Methods, 15, 234-249.
    • (2010) Psychological Methods , vol.15 , pp. 234-249
    • Harder, V.S.1    Stuart, E.A.2    Anthony, J.C.3
  • 38
    • 37349054157 scopus 로고    scopus 로고
    • Using heteroskedasticity-consistent standard error estimators in OLS regression: An introduction and software implementation
    • Hayes, A. F., & Cai, L. (2007). Using heteroskedasticity-consistent standard error estimators in OLS regression: An introduction and software implementation. Behavior Research Methods, 39, 709-722. http://dx.doi .org/10.3758/BF03192961
    • (2007) Behavior Research Methods , vol.39 , pp. 709-722
    • Hayes, A.F.1    Cai, L.2
  • 40
    • 36649025421 scopus 로고    scopus 로고
    • Criteria for working-correlation structure selection in GEE
    • Hin, L. Y., Carey, V. J., & Wang, Y. G. (2007). Criteria for working-correlation structure selection in GEE. The American Statistician, 61, 360-364. http://dx.doi.org/10.1198/000313007X245122.
    • (2007) The American Statistician , vol.61 , pp. 360-364
    • Hin, L.Y.1    Carey, V.J.2    Wang, Y.G.3
  • 41
    • 63149190796 scopus 로고    scopus 로고
    • Working-correlation-structure identification in generalized estimating equations
    • Hin, L. Y., & Wang, Y. G. (2009). Working-correlation-structure identification in generalized estimating equations. Statistics in Medicine, 28, 642-658.
    • (2009) Statistics in Medicine , vol.28 , pp. 642-658
    • Hin, L.Y.1    Wang, Y.G.2
  • 42
    • 0032325285 scopus 로고    scopus 로고
    • Centering decisions in hierarchical linear models: Implications for research in organizations
    • Hoffmann, D. A., & Gavin, M. B. (1998). Centering decisions in hierarchical linear models: Implications for research in organizations. Journal of Management, 24, 623-641. http://dx.doi.org/10.1177/ 014920639802400504.
    • (1998) Journal of Management , vol.24 , pp. 623-641
    • Hoffmann, D.A.1    Gavin, M.B.2
  • 43
    • 0032937149 scopus 로고    scopus 로고
    • Maximum likelihood analysis of generalized linear models with missing covariates
    • Horton, N. J., & Laird, N. M. (1999). Maximum likelihood analysis of generalized linear models with missing covariates. Statistical Methods in Medical Research, 8, 37-50. http://dx.doi.org/10.1191/ 096228099673120862.
    • (1999) Statistical Methods in Medical Research , vol.8 , pp. 37-50
    • Horton, N.J.1    Laird, N.M.2
  • 44
    • 0035102876 scopus 로고    scopus 로고
    • Maximum likelihood analysis of logistic regression models with incomplete covariate data and auxiliary information
    • Horton, N. J., & Laird, N. M. (2001). Maximum likelihood analysis of logistic regression models with incomplete covariate data and auxiliary information. Biometrics, 57, 34-42. http://dx.doi.org/10.1111/j.0006-341X.2001.00034.x.
    • (2001) Biometrics , vol.57 , pp. 34-42
    • Horton, N.J.1    Laird, N.M.2
  • 45
    • 0038934381 scopus 로고    scopus 로고
    • Review of software to fit generalized estimating equation regression models
    • Horton, N. J., & Lipsitz, S. R. (1999). Review of software to fit generalized estimating equation regression models. The American Statistician, 53, 160-169.
    • (1999) The American Statistician , vol.53 , pp. 160-169
    • Horton, N.J.1    Lipsitz, S.R.2
  • 46
    • 0002875903 scopus 로고    scopus 로고
    • Multilevel modeling: When and why
    • I. Balderjahn, R. Mathar, & M. Schader Classification, data analysis, and data highways Berlin, Germany: Springer.
    • Hox, J. J. (1998). Multilevel modeling: When and why. In I. Balderjahn, R. Mathar, & M. Schader (Eds.), Classification, data analysis, and data highways (pp. 147-154). Berlin, Germany: Springer. http://dx.doi.org/ 10.1007/978-3-642-72087-1_17.
    • (1998) , pp. 147-154
    • Hox, J.J.1
  • 47
    • 0003421982 scopus 로고    scopus 로고
    • Multilevel analysis: Techniques and applications
    • Mahwah, NJ: Erlbaum.
    • Hox, J. (2010). Multilevel analysis: Techniques and applications (2nd ed.). Mahwah, NJ: Erlbaum.
    • (2010)
    • Hox, J.1
  • 48
    • 77953924962 scopus 로고    scopus 로고
    • To GEE or not to GEE: Comparing population average and mixed models for estimating the associations between neighborhood risk factors and health
    • Hubbard, A. E., Ahern, J., Fleischer, N. L., Van der Laan, M., Lippman, S. A., Jewell, N. Satariano, W. A. (2010). To GEE or not to GEE: Comparing population average and mixed models for estimating the associations between neighborhood risk factors and health. Epidemiology, 21, 467-474. http://dx.doi.org/10.1097/EDE.0b013e3181caeb90.
    • (2010) Epidemiology , vol.21 , pp. 467-474
    • Hubbard, A.E.1    Ahern, J.2    Fleischer, N.L.3    Van der Laan, M.4    Lippman, S.A.5    Jewell, N.6    Satariano, W.A.7
  • 53
    • 47749090885 scopus 로고    scopus 로고
    • Accuracy of Laplace approximation for discrete response mixed models
    • Joe, H. (2008). Accuracy of Laplace approximation for discrete response mixed models. Computational Statistics & Data Analysis, 52, 5066-5074. http://dx.doi.org/10.1016/j.csda.2008.05.002.
    • (2008) Computational Statistics & Data Analysis , vol.52 , pp. 5066-5074
    • Joe, H.1
  • 54
    • 0345734935 scopus 로고    scopus 로고
    • Likelihood based frequentist inference when data are missing at random
    • Kenward, M. G., & Molenberghs, G. (1998). Likelihood based frequentist inference when data are missing at random. Statistical Science, 13, 236-247. http://dx.doi.org/10.1214/ss/1028905886.
    • (1998) Statistical Science , vol.13 , pp. 236-247
    • Kenward, M.G.1    Molenberghs, G.2
  • 55
    • 0006524829 scopus 로고    scopus 로고
    • A comparison of two approaches for selecting covariance structures in the analysis of repeated measurements
    • Keselman, H. J., Algina, J., Kowalchuk, R. K., & Wolfinger, R. D. (1998). A comparison of two approaches for selecting covariance structures in the analysis of repeated measurements. Communications in Statistics Simulation and Computation, 27, 591-604. http://dx.doi.org/10.1080/ 03610919808813497.
    • (1998) Communications in Statistics Simulation and Computation , vol.27 , pp. 591-604
    • Keselman, H.J.1    Algina, J.2    Kowalchuk, R.K.3    Wolfinger, R.D.4
  • 56
    • 38949200234 scopus 로고    scopus 로고
    • Multilevel modeling with correlated effects
    • Kim, J. S., & Frees, E. W. (2007). Multilevel modeling with correlated effects. Psychometrika, 72, 505-533.
    • (2007) Psychometrika , vol.72 , pp. 505-533
    • Kim, J.S.1    Frees, E.W.2
  • 57
    • 84890205776 scopus 로고    scopus 로고
    • Logistic regression with multiple random effects: A simulation study of estimation methods and statistical packages
    • Kim, Y., Choi, Y. K., & Emery, S. (2013). Logistic regression with multiple random effects: A simulation study of estimation methods and statistical packages. The American Statistician, 67, 171-182. http://dx .doi.org/10.1080/00031305.2013.817357.
    • (2013) The American Statistician , vol.67 , pp. 171-182
    • Kim, Y.1    Choi, Y.K.2    Emery, S.3
  • 58
    • 0036290870 scopus 로고    scopus 로고
    • An eco-behavioral approach to examining the contextual effects of early childhood classrooms
    • Kontos, S., Burchinal, M., Howes, C., Wisseh, S., & Galinsky, E. (2002). An eco-behavioral approach to examining the contextual effects of early childhood classrooms. Early Childhood Research Quarterly, 17, 239-258. http://dx.doi.org/10.1016/S0885-2006(02)00147-3.
    • (2002) Early Childhood Research Quarterly , vol.17 , pp. 239-258
    • Kontos, S.1    Burchinal, M.2    Howes, C.3    Wisseh, S.4    Galinsky, E.5
  • 59
    • 0037281433 scopus 로고    scopus 로고
    • A pseudo maximum likelihood approach to multilevel modelling of survey data
    • Kovacevic, M. S., & Rai, S. N. (2003). A pseudo maximum likelihood approach to multilevel modelling of survey data. Communications in Statistics Theory and Methods, 32, 103-121. http://dx.doi.org/10.1081/ STA-120017802.
    • (2003) Communications in Statistics Theory and Methods , vol.32 , pp. 103-121
    • Kovacevic, M.S.1    Rai, S.N.2
  • 60
    • 0003538388 scopus 로고    scopus 로고
    • Are multilevel techniques necessary
    • Unpublished manuscript, California State University, Los Angeles, CA.
    • Kreft, I. G. G. (1996). Are multilevel techniques necessary? An overview, including simulation studies. Unpublished manuscript, California State University, Los Angeles, CA.
    • (1996) An overview, including simulation studies
    • Kreft, I.G.G.1
  • 61
    • 84861194072 scopus 로고
    • The effect of different forms of centering in hierarchical linear models
    • Kreft, I. G., de Leeuw, J., & Aiken, L. S. (1995). The effect of different forms of centering in hierarchical linear models. Multivariate Behavioral Research, 30, 1-21. http://dx.doi.org/10.1207/s15327906mbr3001_1.
    • (1995) Multivariate Behavioral Research , vol.30 , pp. 1-21
    • Kreft, I.G.1    de Leeuw, J.2    Aiken, L.S.3
  • 62
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963-974. http://dx.doi.org/10.2307/2529876.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 63
    • 85014340803 scopus 로고    scopus 로고
    • Misspecification of the covariance matrix in the linear mixed model: A Monte Carlo simulation
    • Doctoral dissertation). University of Minnesota, St. Paul, MN.
    • LeBeau, B. (2013). Misspecification of the covariance matrix in the linear mixed model: A Monte Carlo simulation (Doctoral dissertation). University of Minnesota, St. Paul, MN.
    • (2013)
    • LeBeau, B.1
  • 64
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang, K. Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13-22. http://dx.doi.org/10 .1093/biomet/73.1.13.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.Y.1    Zeger, S.L.2
  • 65
    • 42149136843 scopus 로고    scopus 로고
    • Estimation and prediction in linear mixed models with skew-normal random effects for longitudinal data
    • Lin, T. I., & Lee, J. C. (2008). Estimation and prediction in linear mixed models with skew-normal random effects for longitudinal data. Statistics in Medicine, 27, 1490-1507.
    • (2008) Statistics in Medicine , vol.27 , pp. 1490-1507
    • Lin, T.I.1    Lee, J.C.2
  • 66
    • 0442278074 scopus 로고    scopus 로고
    • A weighted estimating equation for missing covariate data with properties similar to maximum likelihood
    • Lipsitz, S. R., Ibrahim, J. G., & Zhao, L. P. (1999). A weighted estimating equation for missing covariate data with properties similar to maximum likelihood. Journal of the American Statistical Association, 94, 1147-1160. http://dx.doi.org/10.1080/01621459.1999.10473870.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 1147-1160
    • Lipsitz, S.R.1    Ibrahim, J.G.2    Zhao, L.P.3
  • 67
    • 36749002202 scopus 로고    scopus 로고
    • Type I and Type II error under random-effects misspecification in generalized linear mixed models
    • Litière, S., Alonso, A., & Molenberghs, G. (2007). Type I and Type II error under random-effects misspecification in generalized linear mixed models. Biometrics, 63, 1038-1044. http://dx.doi.org/10.1111/j.1541-0420 .2007.00782.x.
    • (2007) Biometrics , vol.63 , pp. 1038-1044
    • Litière, S.1    Alonso, A.2    Molenberghs, G.3
  • 68
    • 48049093037 scopus 로고    scopus 로고
    • A likelihood reformulation method in non-normal random effects models
    • Liu, L., & Yu, Z. (2008). A likelihood reformulation method in non-normal random effects models. Statistics in Medicine, 27, 3105-3124.
    • (2008) Statistics in Medicine , vol.27 , pp. 3105-3124
    • Liu, L.1    Yu, Z.2
  • 70
    • 34547882049 scopus 로고    scopus 로고
    • A comparison of two bias-corrected covariance estimators for generalized estimating equations
    • Lu, B., Preisser, J. S., Qaqish, B. F., Suchindran, C., Bangdiwala, S. I., & Wolfson, M. (2007). A comparison of two bias-corrected covariance estimators for generalized estimating equations. Biometrics, 63, 935-941.
    • (2007) Biometrics , vol.63 , pp. 935-941
    • Lu, B.1    Preisser, J.S.2    Qaqish, B.F.3    Suchindran, C.4    Bangdiwala, S.I.5    Wolfson, M.6
  • 71
    • 78449311066 scopus 로고    scopus 로고
    • The simultaneous decision(s) about the number of lower-and higher-level classes in multilevel latent class analysis
    • Lukočiene O., Varriale, R., & Vermunt, J. K. (2010). The simultaneous decision(s) about the number of lower-and higher-level classes in multilevel latent class analysis. Sociological Methodology, 40, 247-283. http://dx.doi.org/10.1111/j.1467-9531.2010.01231.x.
    • (2010) Sociological Methodology , vol.40 , pp. 247-283
    • Lukočiene, O.1    Varriale, R.2    Vermunt, J.K.3
  • 72
    • 2642563545 scopus 로고    scopus 로고
    • The influence of violations of assumptions on multilevel parameter estimates and their standard errors
    • Maas, C. J., & Hox, J. J. (2004). The influence of violations of assumptions on multilevel parameter estimates and their standard errors. Computational Statistics & Data Analysis, 46, 427-440. http://dx.doi.org/10 .1016/j.csda.2003.08.006.
    • (2004) Computational Statistics & Data Analysis , vol.46 , pp. 427-440
    • Maas, C.J.1    Hox, J.J.2
  • 73
    • 0035099161 scopus 로고    scopus 로고
    • A covariance estimator for GEE with improved small-sample properties
    • Mancl, L. A., & DeRouen, T. A. (2001). A covariance estimator for GEE with improved small-sample properties. Biometrics, 57, 126-134. http:// dx.doi.org/10.1111/j.0006-341X.2001.00126.x.
    • (2001) Biometrics , vol.57 , pp. 126-134
    • Mancl, L.A.1    DeRouen, T.A.2
  • 74
    • 3543093795 scopus 로고    scopus 로고
    • Citizen participation and the neighborhood context: A new look at the coproduction of local public goods
    • Marschall, M. J. (2004). Citizen participation and the neighborhood context: A new look at the coproduction of local public goods. Political Research Quarterly, 57, 231-244. http://dx.doi.org/10.1177/ 106591290405700205.
    • (2004) Political Research Quarterly , vol.57 , pp. 231-244
    • Marschall, M.J.1
  • 75
    • 0003663926 scopus 로고
    • Generalized linear models
    • London, UK: Chapman and Hall
    • McCullagh, P., & Nelder, J. A. (1989). Generalized linear models. London, UK: Chapman and Hall. http://dx.doi.org/10.1007/978-1-4899-3242-6.
    • (1989)
    • McCullagh, P.1    Nelder, J.A.2
  • 77
    • 84925614904 scopus 로고    scopus 로고
    • Modeling sparsely clustered data: Design-based, model-based, and single-level methods
    • McNeish, D. M. (2014). Modeling sparsely clustered data: Design-based, model-based, and single-level methods. Psychological Methods, 19, 552-563. http://dx.doi.org/10.1037/met0000024.
    • (2014) Psychological Methods , vol.19 , pp. 552-563
    • McNeish, D.M.1
  • 78
    • 84992437384 scopus 로고    scopus 로고
    • Clustered data with small sample sizes: Comparing the performance of model-based and design-based approaches
    • Simulation and Computation. Advance online publication
    • McNeish, D. M., & Harring, J. R. (2015). Clustered data with small sample sizes: Comparing the performance of model-based and design-based approaches. Communications in Statistics. Simulation and Computation. Advance online publication. http://dx.doi.org/10.1080/03610918.2014.983648.
    • (2015) Communications in Statistics
    • McNeish, D.M.1    Harring, J.R.2
  • 79
    • 84908298355 scopus 로고    scopus 로고
    • The effect of small sample size on two level model estimates: A review and illustration
    • Advance online publication
    • McNeish, D. M., & Stapleton, L. M. (2014). The effect of small sample size on two level model estimates: A review and illustration. Educational Psychology Review. Advance online publication. http://dx.doi.org/ 10.1007/s10648-014-9287-x.
    • (2014) Educational Psychology Review
    • McNeish, D.M.1    Stapleton, L.M.2
  • 81
    • 8644282112 scopus 로고    scopus 로고
    • Meaningful statistical model formulations for repeated measures
    • Molenberghs, G., & Verbeke, G. (2004). Meaningful statistical model formulations for repeated measures. Statistica Sinica, 14, 989-1020.
    • (2004) Statistica Sinica , vol.14 , pp. 989-1020
    • Molenberghs, G.1    Verbeke, G.2
  • 82
    • 33846889740 scopus 로고    scopus 로고
    • Likelihood ratio, score, and Wald tests in a constrained parameter space
    • Molenberghs, G., & Verbeke, G. (2007). Likelihood ratio, score, and Wald tests in a constrained parameter space. The American Statistician, 61, 22-27. http://dx.doi.org/10.1198/000313007X171322.
    • (2007) The American Statistician , vol.61 , pp. 22-27
    • Molenberghs, G.1    Verbeke, G.2
  • 84
    • 0032416717 scopus 로고    scopus 로고
    • Likelihood ratio testing of variance components in the linear mixed-effects model using restricted maximum likelihood
    • Morrell, C. H. (1998). Likelihood ratio testing of variance components in the linear mixed-effects model using restricted maximum likelihood. Biometrics, 54, 1560-1568. http://dx.doi.org/10.2307/2533680.
    • (1998) Biometrics , vol.54 , pp. 1560-1568
    • Morrell, C.H.1
  • 85
    • 49749091703 scopus 로고    scopus 로고
    • Arbitrarily normalized coefficients, information sets, and false reports of "biases" in binary outcome models
    • Mroz, T. A., & Zayats, Y. V. (2008). Arbitrarily normalized coefficients, information sets, and false reports of "biases" in binary outcome models. The Review of Economics and Statistics, 90, 406-413. http://dx.doi.org/ 10.1162/rest.90.3.406.
    • (2008) The Review of Economics and Statistics , vol.90 , pp. 406-413
    • Mroz, T.A.1    Zayats, Y.V.2
  • 86
    • 84995346800 scopus 로고    scopus 로고
    • Growth mixture modeling: Analysis with non-Gaussian random effects
    • G. Fitzmaurice, M. Davidian, G. Verbeke, & G. Molenberghs ). Boca Raton, FL: Chapman & Hall/CRC.
    • Muthen, B. O., & Asparouhov, T. (2008). Growth mixture modeling: Analysis with non-Gaussian random effects. In G. Fitzmaurice, M. Davidian, G. Verbeke, & G. Molenberghs (Eds.), Longitudinal data analysis (pp. 143-165). Boca Raton, FL: Chapman & Hall/CRC.
    • (2008) Longitudinal data analysis , pp. 143-165
    • Muthen, B.O.1    Asparouhov, T.2
  • 88
    • 70349209334 scopus 로고    scopus 로고
    • Clustered standard errors in Stata
    • United Kingdom Stata Users' Group Meetings.
    • Nichols, A., and Schafer, M. (2007, July). Clustered standard errors in Stata, United Kingdom Stata Users' Group Meetings.
    • (2007)
    • Nichols, A.1    Schafer, M.2
  • 89
    • 0035102570 scopus 로고    scopus 로고
    • Akaike's information criterion in generalized estimating equations
    • Pan, W. (2001). Akaike's information criterion in generalized estimating equations. Biometrics, 57, 120-125. http://dx.doi.org/10.1111/j.0006-341X.2001.00120.x.
    • (2001) Biometrics , vol.57 , pp. 120-125
    • Pan, W.1
  • 90
    • 84892702170 scopus 로고    scopus 로고
    • Estimating standard errors in finance panel data sets: Comparing approaches
    • Petersen, M. A. (2009). Estimating standard errors in finance panel data sets: Comparing approaches. Review of Financial Studies, 22, 435-480. http://dx.doi.org/10.1093/rfs/hhn053.
    • (2009) Review of Financial Studies , vol.22 , pp. 435-480
    • Petersen, M.A.1
  • 91
    • 0242487779 scopus 로고    scopus 로고
    • A different kind of contextual effect: Geographical clustering of cocaine incidence in the USA
    • Petronis, K. R., & Anthony, J. C. (2003). A different kind of contextual effect: Geographical clustering of cocaine incidence in the USA. Journal of Epidemiology and Community Health, 57, 893-900. http://dx.doi.org/ 10.1136/jech.57.11.893.
    • (2003) Journal of Epidemiology and Community Health , vol.57 , pp. 893-900
    • Petronis, K.R.1    Anthony, J.C.2
  • 93
    • 84946045727 scopus 로고
    • Approximations to the loglikelihood function in the nonlinear mixed-effects model
    • Pinheiro, J. C., & Bates, D. M. (1995). Approximations to the loglikelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics, 4, 12-35.
    • (1995) Journal of Computational and Graphical Statistics , vol.4 , pp. 12-35
    • Pinheiro, J.C.1    Bates, D.M.2
  • 94
    • 33645565987 scopus 로고    scopus 로고
    • Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models
    • Pinheiro, J. C., & Chao, E. C. (2006). Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models. Journal of Computational and Graphical Statistics, 15, 58-81. http://dx.doi.org/10.1198/106186006X96962.
    • (2006) Journal of Computational and Graphical Statistics , vol.15 , pp. 58-81
    • Pinheiro, J.C.1    Chao, E.C.2
  • 95
    • 33748780620 scopus 로고    scopus 로고
    • Multilevel modelling of complex survey data
    • Rabe-Hesketh, S., & Skrondal, A. (2006). Multilevel modelling of complex survey data. Journal of the Royal Statistical Society, 169, 805-827. http://dx.doi.org/10.1111/j.1467-985X.2006.00426.x.
    • (2006) Journal of the Royal Statistical Society , vol.169 , pp. 805-827
    • Rabe-Hesketh, S.1    Skrondal, A.2
  • 96
    • 84899138953 scopus 로고    scopus 로고
    • A weighted composite likelihood approach to inference for two-level models from survey data
    • Rao, J. N. K., Verret, F., & Hidiroglou, M. A. (2013). A weighted composite likelihood approach to inference for two-level models from survey data. Survey Methodology, 39, 263-282.
    • (2013) Survey Methodology , vol.39 , pp. 263-282
    • Rao, J.N.K.1    Verret, F.2    Hidiroglou, M.A.3
  • 97
    • 0003967354 scopus 로고    scopus 로고
    • Hierarchical linear models: Applications and data analysis methods
    • Thousand Oaks, CA: Sage.
    • Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods. Thousand Oaks, CA: Sage.
    • (2002)
    • Raudenbush, S.W.1    Bryk, A.S.2
  • 98
    • 77950035264 scopus 로고    scopus 로고
    • Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation
    • Raudenbush, S. W., Yang, M.-L., & Yosef, M. (2000). Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation. Journal of Computational and Graphical Statistics, 9, 141-157.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , pp. 141-157
    • Raudenbush, S.W.1    Yang, M.-L.2    Yosef, M.3
  • 99
    • 84873919640 scopus 로고    scopus 로고
    • R-squared measures for two-level hierarchical linear models using SAS
    • Recchia, A. (2010). R-squared measures for two-level hierarchical linear models using SAS. Journal of Statistical Software, 32, 1-9. http://dx.doi .org/10.18637/jss.v032.c02.
    • (2010) Journal of Statistical Software , vol.32 , pp. 1-9
    • Recchia, A.1
  • 100
    • 84950421496 scopus 로고
    • Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
    • Robins, J. M., Rotnitzky, A., & Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association, 90, 106-121. http://dx.doi.org/10.1080/01621459.1995.10476493.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 106-121
    • Robins, J.M.1    Rotnitzky, A.2    Zhao, L.P.3
  • 101
    • 0000426001 scopus 로고
    • Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data
    • Rotnitzky, A., & Jewell, N. P. (1990). Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. Biometrika, 77, 485-497. http://dx.doi.org/10.1093/biomet/ 77.3.485.
    • (1990) Biometrika , vol.77 , pp. 485-497
    • Rotnitzky, A.1    Jewell, N.P.2
  • 102
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592. http://dx.doi.org/10.1093/biomet/63.3.581.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 103
    • 0003738155 scopus 로고
    • Multiple imputation for nonresponse in surveys
    • New York, NY: Wiley
    • Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY: Wiley. http://dx.doi.org/10.1002/9780470316696.
    • (1987)
    • Rubin, D.B.1
  • 104
    • 85014341162 scopus 로고    scopus 로고
    • Religious attendance in crossnational perspective: A multilevel analysis of 60
    • Ruiter, S., & Van Tubergen, F. (2009). Religious attendance in crossnational perspective: A multilevel analysis of 60.
    • (2009)
    • Ruiter, S.1    Van Tubergen, F.2
  • 105
    • 77149157501 scopus 로고    scopus 로고
    • countries. American Journal of Sociology, 115, 863-895. http://dx.doi.org/10.1086/603536.
    • American Journal of Sociology , vol.115 , pp. 863-895
  • 106
    • 78650149643 scopus 로고    scopus 로고
    • Expected versus observed information in SEM with incomplete normal and nonnormal data
    • Savalei, V. (2010). Expected versus observed information in SEM with incomplete normal and nonnormal data. Psychological Methods, 15, 352-367. http://dx.doi.org/10.1037/a0020143.
    • (2010) Psychological Methods , vol.15 , pp. 352-367
    • Savalei, V.1
  • 107
    • 45449111368 scopus 로고    scopus 로고
    • Constrained versus unconstrained estimation in structural equation modeling
    • Savalei, V., & Kolenikov, S. (2008). Constrained versus unconstrained estimation in structural equation modeling. Psychological Methods, 13, 150-170. http://dx.doi.org/10.1037/1082-989X.13.2.150.
    • (2008) Psychological Methods , vol.13 , pp. 150-170
    • Savalei, V.1    Kolenikov, S.2
  • 108
    • 0442278084 scopus 로고    scopus 로고
    • Adjusting for nonignorable drop-out using semiparametric nonresponse models
    • Scharfstein, D. O., Rotnitzky, A., & Robins, J. M. (1999). Adjusting for nonignorable drop-out using semiparametric nonresponse models. Journal of the American Statistical Association, 94, 1096-1120. http://dx .doi.org/10.1080/01621459.1999.10473862.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 1096-1120
    • Scharfstein, D.O.1    Rotnitzky, A.2    Robins, J.M.3
  • 109
    • 84892451597 scopus 로고    scopus 로고
    • Why the resistance to statistical innovations?
    • Sharpe, D. (2013). Why the resistance to statistical innovations? Bridging the communication gap. Psychological Methods, 18, 572-582. http://dx .doi.org/10.1037/a0034177.
    • (2013) Bridging the communication gap. Psychological Methods , vol.18 , pp. 572-582
    • Sharpe, D.1
  • 110
    • 84871216580 scopus 로고    scopus 로고
    • The faintest speck of dirt: Disgust enhances the detection of impurity
    • Sherman, G. D., Haidt, J., & Clore, G. L. (2012). The faintest speck of dirt: Disgust enhances the detection of impurity. Psychological Science, 23, 1506-1514. http://dx.doi.org/10.1177/0956797612445318.
    • (2012) Psychological Science , vol.23 , pp. 1506-1514
    • Sherman, G.D.1    Haidt, J.2    Clore, G.L.3
  • 111
    • 36849009693 scopus 로고    scopus 로고
    • Improved generalized estimating equation analysis via xtqls for quasi-least squares in Stata
    • Shults, J., Ratcliffe, S. J., & Leonard, M. (2007). Improved generalized estimating equation analysis via xtqls for quasi-least squares in Stata. The Stata Journal, 7, 147-166.
    • (2007) The Stata Journal , vol.7 , pp. 147-166
    • Shults, J.1    Ratcliffe, S.J.2    Leonard, M.3
  • 112
    • 84890320622 scopus 로고    scopus 로고
    • It pays to be Herr Kaiser: Germans with noble sounding surnames more often work as managers than as employees
    • Silberzahn, R., & Uhlmann, E. L. (2013). It pays to be Herr Kaiser: Germans with noble sounding surnames more often work as managers than as employees. Psychological Science. Advance online publication.
    • (2013) Psychological Science. Advance online publication.
    • Silberzahn, R.1    Uhlmann, E.L.2
  • 113
    • 84965636487 scopus 로고
    • Modeled variance in two-level models
    • Snijders, T. A. B., & Bosker, R. J. (1994). Modeled variance in two-level models. Sociological Methods & Research, 22, 342-363. http://dx.doi .org/10.1177/0049124194022003004.
    • (1994) Sociological Methods & Research , vol.22 , pp. 342-363
    • Snijders, T.A.B.1    Bosker, R.J.2
  • 114
    • 0003560587 scopus 로고    scopus 로고
    • Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling
    • London, UK: Sage
    • Snijders, T. A. B., & Bosker, R. J. (2011). Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling (2nd ed.). London, UK: Sage. http://dx.doi.org/10.1007/978-3-642-04898-2_387.
    • (2011)
    • Snijders, T.A.B.1    Bosker, R.J.2
  • 115
    • 0021730579 scopus 로고
    • Random-effects models for serial observations with binary response
    • Stiratelli, R., Laird, N., & Ware, J. H. (1984). Random-effects models for serial observations with binary response. Biometrics, 40, 961-971. http://dx.doi.org/10.2307/2531147.
    • (1984) Biometrics , vol.40 , pp. 961-971
    • Stiratelli, R.1    Laird, N.2    Ware, J.H.3
  • 116
    • 0028641810 scopus 로고
    • Variance components testing in the longitudinal mixed effects model
    • Stram, D. O., & Lee, J. W. (1994). Variance components testing in the longitudinal mixed effects model. Biometrics, 50, 1171-1177. http://dx .doi.org/10.2307/2533455.
    • (1994) Biometrics , vol.50 , pp. 1171-1177
    • Stram, D.O.1    Lee, J.W.2
  • 119
    • 0031555662 scopus 로고    scopus 로고
    • The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data
    • Verbeke, G., & Lesaffre, E. (1997). The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data. Computational Statistics & Data Analysis, 23, 541-556. http://dx.doi .org/10.1016/S0167-9473(96)00047-3.
    • (1997) Computational Statistics & Data Analysis , vol.23 , pp. 541-556
    • Verbeke, G.1    Lesaffre, E.2
  • 120
    • 36649034215 scopus 로고    scopus 로고
    • What can go wrong with the score test?
    • Verbeke, G., & Molenberghs, G. (2007). What can go wrong with the score test? The American Statistician, 61, 289-290. http://dx.doi.org/10.1198/ 000313007X243089.
    • (2007) The American Statistician , vol.61 , pp. 289-290
    • Verbeke, G.1    Molenberghs, G.2
  • 121
    • 84879180863 scopus 로고    scopus 로고
    • A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix
    • Westgate, P. M. (2013). A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix. Statistics in Medicine, 32, 2850-2858. http://dx.doi.org/10.1002/sim.5709.
    • (2013) Statistics in Medicine , vol.32 , pp. 2850-2858
    • Westgate, P.M.1
  • 122
    • 0000095552 scopus 로고
    • A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity
    • White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48, 817-838. http://dx.doi.org/10.2307/1912934.
    • (1980) Econometrica , vol.48 , pp. 817-838
    • White, H.1
  • 123
    • 0003695372 scopus 로고
    • Asymptotic theory for econometricians
    • San Diego, CA: Academic Press.
    • White, H. (1984). Asymptotic theory for econometricians. San Diego, CA: Academic Press.
    • (1984)
    • White, H.1
  • 124
    • 78650786202 scopus 로고    scopus 로고
    • The comparison of model selection criteria when selecting among competing hierarchical linear models
    • Whittaker, T. A., & Furlow, C. F. (2009). The comparison of model selection criteria when selecting among competing hierarchical linear models. Journal of Modern Applied Statistical Methods, 8, 173-193.
    • (2009) Journal of Modern Applied Statistical Methods , vol.8 , pp. 173-193
    • Whittaker, T.A.1    Furlow, C.F.2
  • 125
    • 79960824743 scopus 로고
    • Covariance structure selection in general mixed models
    • Wolfinger, R. (1993). Covariance structure selection in general mixed models. Communications in Statistics Simulation and Computation, 22, 1079-1106. http://dx.doi.org/10.1080/03610919308813143.
    • (1993) Communications in Statistics Simulation and Computation , vol.22 , pp. 1079-1106
    • Wolfinger, R.1
  • 127
    • 84864297644 scopus 로고    scopus 로고
    • Comparison of methods for estimating the intraclass correlation coefficient for binary responses in cancer prevention cluster randomized trials
    • Wu, S., Crespi, C. M., & Wong, W. K. (2012). Comparison of methods for estimating the intraclass correlation coefficient for binary responses in cancer prevention cluster randomized trials. Contemporary Clinical Trials, 33, 869-880. http://dx.doi.org/10.1016/j.cct.2012.05.004.
    • (2012) Contemporary Clinical Trials , vol.33 , pp. 869-880
    • Wu, S.1    Crespi, C.M.2    Wong, W.K.3
  • 128
    • 0022673130 scopus 로고
    • Longitudinal data analysis for discrete and continuous outcomes
    • Zeger, S. L., & Liang, K. Y. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics, 42, 121-130. http://dx.doi.org/10 .2307/2531248.
    • (1986) Biometrics , vol.42 , pp. 121-130
    • Zeger, S.L.1    Liang, K.Y.2
  • 129
    • 0024205301 scopus 로고
    • Models for longitudinal data: A generalized estimating equation approach
    • Zeger, S. L., Liang, K. Y., & Albert, P. S. (1988). Models for longitudinal data: A generalized estimating equation approach. Biometrics, 44, 1049-1060. http://dx.doi.org/10.2307/2531734.
    • (1988) Biometrics , vol.44 , pp. 1049-1060
    • Zeger, S.L.1    Liang, K.Y.2    Albert, P.S.3
  • 130
    • 22644448536 scopus 로고    scopus 로고
    • Comparisons of software packages for generalized linear multilevel models
    • Zhou, X.-H., Perkins, A. J., & Hui, S. L. (1999). Comparisons of software packages for generalized linear multilevel models. The American Statistician, 53, 282-290.
    • (1999) The American Statistician , vol.53 , pp. 282-290
    • Zhou, X.-H.1    Perkins, A.J.2    Hui, S.L.3
  • 131
    • 77951211565 scopus 로고    scopus 로고
    • Orthographic depth and its impact on universal predictors of reading: A cross-language investigation
    • Ziegler, J. C., Bertrand, D., Tóth, D., Csépe, V., Reis, A., Faísca, L., Blomert, L. (2010). Orthographic depth and its impact on universal predictors of reading: A cross-language investigation. Psychological Science, 21, 551-559. http://dx.doi.org/10.1177/0956797610363406
    • (2010) Psychological Science , vol.21 , pp. 551-559
    • Ziegler, J.C.1    Bertrand, D.2    Tóth, D.3    Csépe, V.4    Reis, A.5    Faísca, L.6    Blomert, L.7
  • 132
    • 0035529984 scopus 로고    scopus 로고
    • Generalized estimating equation models for correlated data: A review with applications
    • Zorn, C. J. (2001). Generalized estimating equation models for correlated data: A review with applications. American Journal of Political Science, 45, 470-490. http://dx.doi.org/10.2307/2669353
    • (2001) American Journal of Political Science , vol.45 , pp. 470-490
    • Zorn, C.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.