메뉴 건너뛰기




Volumn 10, Issue 1, 2014, Pages 1-11

How low can you go?: An investigation of the influence of sample size and model complexity on point and interval estimates in two-level linear models

Author keywords

Monte Carlo; Multilevel models; Sample size

Indexed keywords


EID: 84894161242     PISSN: 16141881     EISSN: 16142241     Source Type: Journal    
DOI: 10.1027/1614-2241/a000062     Document Type: Article
Times cited : (135)

References (36)
  • 1
    • 84862518039 scopus 로고    scopus 로고
    • Cluster size in multilevel models: The impact of sparse data structures on point and interval estimates in two-level models
    • August Alexandria, VA: American Statistical Association
    • Bell, B. A., Ferron, J. M., & Kromrey, J. D. (2008, August). Cluster size in multilevel models: The impact of sparse data structures on point and interval estimates in two-level models. In Proceedings of the joint st atistical meetings, survey research methods section (pp. 1122-1129). Alexandria, VA: American Statistical Association.
    • (2008) Proceedings of the Joint St Atistical Meetings, Survey Research Methods Section , pp. 1122-1129
    • Bell, B.A.1    Ferron, J.M.2    Kromrey, J.D.3
  • 2
    • 85128006380 scopus 로고    scopus 로고
    • The effect of sparse data structure s and model misspecification on point and interval estimates in multilevel models
    • April Presented at the San Diego, CA
    • Bell, B. A., Ferron, J. M., & Kromrey, J. D. (2009, April). The effect of sparse data structure s and model misspecification on point and interval estimates in multilevel models. Presented at the Annual Meeting of the American Educational Research Association, San Diego, CA.
    • (2009) Annual Meeting of the American Educational Research Association
    • Bell, B.A.1    Ferron, J.M.2    Kromrey, J.D.3
  • 3
    • 0034394761 scopus 로고    scopus 로고
    • Implementation and performance issues in the Bayesian and likelihood fitting of multilevel models
    • doi: 10.1007/s001800000041
    • Browne, W. J., & Draper, D. (2000). Implementation and performance issues in the Bayesian and likelihood fitting of multilevel models. Computational Statistics, 15, 391-420. doi: 10.1007/s001800000041
    • (2000) Computational Statistics , vol.15 , pp. 391-420
    • Browne, W.J.1    Draper, D.2
  • 4
    • 33845891920 scopus 로고    scopus 로고
    • The design of simulation studies in medical statistics
    • DOI 10.1002/sim.2673
    • Burton, A., Altman, D. G., Royston, P., & Holder, R. L. (2006). The design of simulation studies in medical statistics. Statistics in Medicine, 25, 4279-4292. doi: 10.1002/sim.2673 (Pubitemid 46023772)
    • (2006) Statistics in Medicine , vol.25 , Issue.24 , pp. 4279-4292
    • Burton, A.1    Altman, D.G.2    Royston, P.3    Holder, R.L.4
  • 5
    • 47949122241 scopus 로고    scopus 로고
    • When can group level clustering be ignored Multilevel models versus single-level models with sparse data
    • doi: 10.1136/jech.2007.060798
    • Clarke, P. (2008). When can group level clustering be ignored Multilevel models versus single-level models with sparse data. Journal of Epidemiology and Community Health, 62, 752-758. doi: 10.1136/jech.2007.060798
    • (2008) Journal of Epidemiology and Community Health , vol.62 , pp. 752-758
    • Clarke, P.1
  • 6
    • 33846038609 scopus 로고    scopus 로고
    • Addre ssing data sparseness in contextual population research using cluster analysis to create synthetic neighborhoods
    • doi: 10.1177/0049124106292362
    • Clarke, P., & Wheaton, B. (2007). Addre ssing data sparseness in contextual population research using cluster analysis to create synthetic neighborhoods. Sociological Methods & Research, 35, 311-351. doi: 10.1177/0049124106292362
    • (2007) Sociological Methods & Research , vol.35 , pp. 311-351
    • Clarke, P.1    Wheaton, B.2
  • 7
    • 0000087715 scopus 로고
    • Multiple regression as a general data-analytic system
    • doi: 10.1037/ h0026714
    • Cohen, J. (1968). Multiple regression as a general data-analytic system. Psychological Bulletin, 70, 426- 443. doi: 10.1037/h0026714
    • (1968) Psychological Bulletin , vol.70 , pp. 426-443
    • Cohen, J.1
  • 9
    • 77951685086 scopus 로고    scopus 로고
    • A prior power analysis in longitudinal three-level multilevel models: An example with therapist effects
    • doi: 10.1080/10503300903376320
    • De Jong, K., Moerbeek, M., & Van Der Leeden, R. (2010). A prior power analysis in longitudinal three-level multilevel models: An example with therapist effects. Psychotherapy Research, 20, 273-284. doi: 10.1080/10503300903376320
    • (2010) Psychotherapy Research , vol.20 , pp. 273-284
    • De Jong, K.1    Moerbeek, M.2    Van Der Leeden, R.3
  • 14
    • 0002875903 scopus 로고    scopus 로고
    • Multilevel modeling: When and why
    • In I. Bal derjahn, R. Mathar, & M. Schader (Eds.) New York, NY: Springer
    • Hox, J. J. (1998). Multilevel modeling: When and why. In I. Bal derjahn, R. Mathar, & M. Schader (Eds.), Classification, data analysis, and data highways (pp. 147-154). New York, NY: Springer.
    • (1998) Classification, Data Analysis, and Data Highways , pp. 147-154
    • Hox, J.J.1
  • 16
    • 1642493333 scopus 로고    scopus 로고
    • The accuracy of multilevel structural equation modeling with psuedobalanced groups and small samples
    • doi: 10.1207/S15328007SEM080 2-1
    • Hox, J. J., & Maas, C. J. M (2001). The accuracy of multilevel structural equation modeling with psuedobalanced groups and small samples. Structural Equation Modeling, 8, 157-174. doi: 10.1207/S15328007SEM080 2-1
    • (2001) Structural Equation Modeling , vol.8 , pp. 157-174
    • Hox, J.J.1    Maas, C.J.M.2
  • 17
    • 36248966724 scopus 로고    scopus 로고
    • The consequences of ignoring multilevel data structures in nonhierarchical covariance modeling
    • doi: 10.1207/S15328007SEM0803-1
    • Julian, M. (2001). The consequences of ignoring multilevel data structures in nonhierarchical covariance modeling. Structural Equation Modeling, 8, 325-352. doi: 10.1207/S15328007SEM0803-1
    • (2001) Structural Equation Modeling , vol.8 , pp. 325-352
    • Julian, M.1
  • 19
    • 1842783963 scopus 로고    scopus 로고
    • Robustness issues in multilevel regression analysis
    • DOI 10.1046/j.0039-0402.2003.00252.x
    • Maas, C. J. M., & Hox, J. J. (2004). Robustness issues in multilevel regression analysis. Statistica Neerlandica, 58, 127-137. doi: 10.1046/j.0039-0402.2003.00252.x (Pubitemid 38482843)
    • (2004) Statistica Neerlandica , vol.58 , Issue.2 , pp. 127-137
    • Maas, C.J.M.1    Hox, J.J.2
  • 20
    • 69949190053 scopus 로고    scopus 로고
    • Sufficient sample sizes for multilevel modeling
    • doi: 10.1027/1614-2241.1.3.86
    • Maas, C. J. M., & Hox, J. J. (2005). Sufficient sample sizes for multilevel modeling. Methodology, 1, 86-92. doi: 10.1027/1614-2241.1.3.86
    • (2005) Methodology , vol.1 , pp. 86-92
    • Maas, C.J.M.1    Hox, J.J.2
  • 21
    • 3042811866 scopus 로고    scopus 로고
    • The consequence of ignoring a level of nesting in multilevel analysis
    • Moerbeek, M. (2004). The consequences of ignoring a level of nesting in multilevel analysis. Multivariate Behavioral Research, 39, 129-149. doi: 10.1207/s15327906mbr3901-5 (Pubitemid 38882482)
    • (2004) Multivariate Behavioral Research , vol.39 , Issue.1 , pp. 129-149
    • Moerbeek, M.1
  • 22
    • 33746143161 scopus 로고    scopus 로고
    • Power and money in cluster randomized trials: When is it worth measuring a covariate?
    • DOI 10.1002/sim.2297
    • Moerbeek, M. (2006). Power and money in cluster randomized trials: When is it worth measuring a covariate Statistics in Medicine, 25, 2607-2617. doi: 10.1002/sim.2297 (Pubitemid 44082449)
    • (2006) Statistics in Medicine , vol.25 , Issue.15 , pp. 2607-2617
    • Moerbeek, M.1
  • 23
    • 34548301106 scopus 로고    scopus 로고
    • A simulation study of sample size for multilevel logistic regression models
    • DOI 10.1186/1471-2288-7-34
    • Moineddin, R., Matheson, F. I., & Glazier, R. H. (2007). A simulation study of sample size for multilevel logistic regression models. BMS Medical Research Methodology, 7, 1-10. doi: 10.1186/1471-2288-7-34 (Pubitemid 47338428)
    • (2007) BMC Medical Research Methodology , vol.7 , pp. 34
    • Moineddin, R.1    Matheson, F.I.2    Glazier, R.H.3
  • 27
    • 0031003769 scopus 로고    scopus 로고
    • Now you see it, now you don't: A comparison of traditional versus random-effects regression models in the analysis of longitudinal follow-up data from a clinical trial
    • DOI 10.1037/0022-006X.65.2.252
    • Nich, C., & Carroll, K. (1997). Now you see it, now you don? t: A comparison of traditional versus random-effects regression models in the analysis of longitudinal follow-up data from a clinical trial. Journal of Consulti ng and Clinical Psychology, 65, 252-261. doi: 10.1037//0022-006X.65.2. 252 (Pubitemid 27147443)
    • (1997) Journal of Consulting and Clinical Psychology , vol.65 , Issue.2 , pp. 252-261
    • Nich, C.1    Carroll, K.2
  • 30
    • 33845301840 scopus 로고    scopus 로고
    • SAS Institute Inc. Cary, NC: SAS Institute Inc
    • SAS Institute Inc. (2003). SAS, release 9.1 [computer program]. Cary, NC: SAS Institute Inc.
    • (2003) SAS, Release 9.1 [Computer Program]
  • 31
    • 61449096231 scopus 로고    scopus 로고
    • SAS Institute Inc. Cary NC: SAS Institute Inc
    • SAS Institute Inc. (2008). SAS/IML-9.2 User?s guide. Cary, NC: SAS Institute Inc.
    • (2008) SAS/IML-9.2 User?s Guide
  • 32
    • 85123016658 scopus 로고    scopus 로고
    • SAS Institute Inc. (2nd ed.) Cary, NC: SAS Institute Inc
    • SAS Institute Inc., (2009). SAS-9.2 Language Reference: Dictionary (2nd ed.). Cary, NC: SAS Institute Inc.
    • (2009) SAS-9.2 Language Reference: Dictionary
  • 34
    • 33847298784 scopus 로고    scopus 로고
    • Power and sample size in multilevel linear models
    • In B. S. Everitt & D C. Howell (Eds.) Chicester, UK: Wiley
    • Snijders, T. A. B. (2005). Power and sample size in multilevel linear models. In B. S. Everitt & D. C. Howell (Eds.), Encyclopedia of Statistics in Behavioral Science (pp. 1570-1573). Chicester, UK: Wiley.
    • (2005) Encyclopedia of Statistics in Behavioral Science , pp. 1570-1573
    • Snijders, T.A.B.1
  • 36
    • 0034572099 scopus 로고    scopus 로고
    • The consequences of ignoring a nested factor on measures of effect size in analysis of variance
    • doi: 10.1037//1082-989X.5.4.425
    • Wampold, B. E., & Serlin, R. C. (2000). The consequences of ignoring a nested factor on measures of effect size in analysis of variance. Psychological Methods, 5, 425-433. doi: 10.1037//1082-989X.5.4.425
    • (2000) Psychological Methods , vol.5 , pp. 425-433
    • Wampold, B.E.1    Serlin, R.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.